
Developing with VMware
vRealize Orchestrator

vRealize Orchestrator 7.6

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright
©

 2008-2019 VMware, Inc. All rights reserved. Copyright and trademark information.

Developing with VMware vRealize Orchestrator

VMware, Inc. 2

https://docs.vmware.com/
http://pubs.vmware.com/copyright-trademark.html

Contents

Developing with VMware vRealize Orchestrator 10

1 Developing Workflows 11
Key Concepts of Workflows 13

Workflow Parameters 13

Workflow Attributes 14

Workflow Schema 14

Workflow Presentation 14

Workflow Tokens 14

Phases in the Workflow Development Process 15

Best Practices for Developing Workflows 15

Access Rights for the Orchestrator Client 16

Testing Workflows During Development 16

Creating and Editing a Workflow 16

Create a Workflow 17

Edit a Workflow 17

Edit a Workflow from the Standard Library 18

Workflow Editor Tabs 18

Provide General Workflow Information 19

Defining Attributes and Parameters 20

Define Workflow Parameters 21

Define Workflow Attributes 22

Attribute and Parameter Naming Restrictions 23

Workflow Schema 24

View Workflow Schema 25

Building a Workflow in the Workflow Schema 25

Schema Elements 29

Schema Element Properties 32

Links and Bindings 35

Decisions 42

Exception Handling 45

Using Error Handlers 46

Foreach Elements and Composite Types 48

Add a Switch Activity to a Workflow 51

Developing Plug-Ins 52

Overview of Plug-Ins 52

Contents and Structure of a Plug-In 61

Orchestrator Plug-In API Reference 66

VMware, Inc. 3

Elements of the vso.xml Plug-In Definition File 77

Best Practices for Orchestrator Plug-In Development 95

Obtaining Input Parameters from Users When a Workflow Starts 111

Creating the Input Parameters Dialog Box In the Presentation Tab 111

Setting Parameter Properties 113

Requesting User Interactions While a Workflow Runs 117

Add a User Interaction to a Workflow 118

Set the User Interaction security.group Attribute 119

Set the timeout.date Attribute to an Absolute Date 120

Calculate a Relative Timeout for User Interactions 121

Set the timeout.date Attribute to a Relative Date 122

Define the External Inputs for a User Interaction 123

Define User Interaction Exception Behavior 124

Create the Input Parameters Dialog Box for the User Interaction 126

Respond to a Request for a User Interaction 127

Calling Workflows Within Workflows 128

Workflow Elements that Call Workflows 128

Call a Workflow Synchronously 131

Call a Workflow Asynchronously 132

Schedule a Workflow 133

Prerequisites for Calling a Remote Workflow from Within Another Workflow 134

Call Several Workflows Simultaneously 135

Running a Workflow on a Selection of Objects 136

Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows 137

Developing Long-Running Workflows 139

Set a Relative Time and Date for Timer-Based Workflows 139

Create a Timer-Based Long-Running Workflow 140

Create a Trigger Object 142

Create a Trigger-Based Long-Running Workflow 144

Configuration Elements 145

Create a Configuration Element 145

Validating Workflows 146

Validate a Workflow and Fix Validation Errors 147

Debugging Workflows 148

Debug a Workflow 148

Example Workflow Debugging 149

Running Workflows 150

Run a Workflow in the Workflow Editor 150

Run a Workflow 151

Resuming a Failed Workflow Run 153

Set the Behavior for Resuming a Failed Workflow Run 153

Developing with VMware vRealize Orchestrator

VMware, Inc. 4

Set Custom Properties for Resuming Failed Workflow Runs 154

Resume a Failed Workflow Run 154

Generate Workflow Documentation 155

Use Workflow Version History 155

Develop a Simple Example Workflow 156

Create the Simple Workflow Example 158

Create the Schema of the Simple Workflow Example 159

Create the Simple Workflow Example Zones 162

Define the Parameters of the Simple Workflow Example 163

Define the Simple Workflow Example Decision Bindings 164

Bind the Action Elements of the Simple Workflow Example 165

Bind the Simple Workflow Example Scripted Task Elements 169

Define the Simple Workflow Example Exception Bindings 177

Set the Read-Write Properties for Attributes of the Simple Workflow Example 178

Set the Simple Workflow Example Parameter Properties 179

Set the Layout of the Simple Workflow Example Input Parameters Dialog Box 180

Validate and Run the Simple Workflow Example 182

Develop a Complex Workflow 183

Create the Complex Workflow Example 185

Create a Custom Action for the Complex Workflow Example 186

Create the Schema of the Complex Workflow Example 187

Create the Complex Workflow Example Zones 189

Define the Parameters of the Complex Workflow Example 191

Define the Bindings for the Complex Workflow Example 192

Set the Complex Workflow Example Attribute Properties 203

Create the Layout of the Complex Workflow Example Input Parameters 204

Validate and Run the Complex Workflow Example 205

2 Scripting 207
Orchestrator Elements that Require Scripting 207

Limitations of the Mozilla Rhino Implementation in Orchestrator 208

Using the Orchestrator Scripting API 209

Access the Scripting Engine from the Workflow Editor 210

Access the Scripting Engine from the Action or Policy Editor 210

Access the Orchestrator API Explorer 211

Use the Orchestrator API Explorer to Find Objects 211

Writing Scripts 212

Add Parameters to Scripts 214

Accessing the Orchestrator Server File System from JavaScript and Workflows 215

Accessing Java Classes from JavaScript 215

Accessing Operating System Commands from JavaScript 216

Developing with VMware vRealize Orchestrator

VMware, Inc. 5

Using XPath Expressions with the vCenter Server Plug-In 216

Using XPath Expressions with the vCenter Server Plug-In 216

Exception Handling Guidelines 217

Orchestrator JavaScript Examples 218

Basic Scripting Examples 219

Email Scripting Examples 221

File System Scripting Examples 222

LDAP Scripting Examples 223

Logging Scripting Examples 223

Networking Scripting Examples 224

Workflow Scripting Examples 224

3 Developing Actions 226
Reusing Actions 226

Access the Actions View 227

Components of the Actions View 227

Creating Actions 227

Create an Action 228

Find Elements That Implement an Action 228

Action Coding Guidelines 229

Use Action Version History 230

Restore Deleted Actions 231

4 Creating Resource Elements 233
View a Resource Element 233

Import an External Object to Use as a Resource Element 234

Edit the Resource Element Information 234

Save a Resource Element to a File 235

Update a Resource Element 236

Add a Resource Element to a Workflow 236

5 Creating Packages 238
Create a Package 238

6 Developing Plug-Ins 240
Overview of Plug-Ins 240

Structure of an Orchestrator Plug-In 241

Exposing an External API to Orchestrator 243

Components of a Plug-In 243

Role of the vso.xml File 245

Roles of the Plug-In Adapter 245

Developing with VMware vRealize Orchestrator

VMware, Inc. 6

Roles of the Plug-In Factory 246

Role of Finder Objects 247

Role of Scripting Objects 248

Role of Event Handlers 248

Contents and Structure of a Plug-In 249

Defining the Application Mapping in the vso.xml File 250

Format of the vso.xml Plug-In Definition File 251

Naming Plug-In Objects 251

Plug-In Object Naming Conventions 252

File Structure of the Plug-In 253

Orchestrator Plug-In API Reference 254

IAop Interface 254

IDynamicFinder Interface 255

IPluginAdaptor Interface 255

IPluginEventPublisher Interface 256

IPluginFactory Interface 257

IPluginNotificationHandler Interface 258

IPluginPublisher Interface 258

WebConfigurationAdaptor Interface 259

PluginTrigger Class 259

PluginWatcher Class 260

QueryResult Class 261

SDKFinderProperty Class 262

PluginExecutionException Class 263

PluginOperationException Class 263

HasChildrenResult Enumeration 264

ScriptingAttribute Annotation Type 265

ScriptingFunction Annotation Type 265

ScriptingParameter Annotation Type 265

Elements of the vso.xml Plug-In Definition File 265

module Element 266

description Element 266

deprecated Element 267

url Element 267

installation Element 267

action Element 268

finder-datasources Element 268

finder-datasource Element 269

inventory Element 270

finders Element 270

finder Element 271

Developing with VMware vRealize Orchestrator

VMware, Inc. 7

properties Element 272

property Element 272

relations Element 273

relation Element 273

id Element 274

inventory-children Element 274

relation-link Element 274

events Element 275

trigger Element 275

trigger-properties Element 275

trigger-property Element 276

gauge Element 276

scripting-objects Element 277

object Element 277

constructors Element 278

constructor Element 278

Constructor parameters Element 278

Constructor parameter Element 278

attributes Element 279

attribute Element 279

methods Element 280

method Element 280

example Element 281

code Element 282

Method parameters Element 282

Method parameter Element 282

singleton Element 282

enumerations Element 283

enumeration Element 283

entries Element 284

entry Element 284

Best Practices for Orchestrator Plug-In Development 284

Approaches for Building Orchestrator Plug-Ins 285

Types of Orchestrator Plug-Ins 287

Plug-In Implementation 290

Recommendations for Orchestrator Plug-In Development 295

Documenting Plug-In User Interface Strings and APIs 298

7 Creating Plug-Ins by Using Maven 300
Create an Orchestrator Plug-In with Maven from an Archetype 300

Maven Archetypes 301

Developing with VMware vRealize Orchestrator

VMware, Inc. 8

Maven-Based Plug-In Development Best Practices 302

Developing with VMware vRealize Orchestrator

VMware, Inc. 9

Developing with VMware vRealize
Orchestrator

Developing with VMware vRealize Orchestrator provides information and instructions for
developing custom VMware® vRealize Orchestrator workflows and actions.

In addition, the documentation contains information about the Orchestrator elements that require
scripting and provides JavaScript examples. Developing with VMware vRealize Orchestrator also
provides instructions about how to create resources and packages.

Intended Audience

This information is intended for developers who want to create custom Orchestrator workflows
and actions, as well as custom building blocks.

Note The procedures described in this guide are based on the user interface of the vRealize
Orchestrator Legacy Client.

VMware, Inc. 10

Developing Workflows 1
You develop workflows in the Orchestrator client interface. Workflow development involves
using the workflow editor, the built-in Mozilla Rhino JavaScript scripting engine, and the
Orchestrator and vCenter Server APIs.

n Key Concepts of Workflows

Workflows consist of a schema, attributes, and parameters. The workflow schema is the
main component of a workflow as it defines all the workflow elements and the logical
connections between them. The workflow attributes and parameters are the variables that
workflows use to transfer data. Orchestrator saves a workflow token every time a workflow
runs, recording the details of that specific run of the workflow.

n Phases in the Workflow Development Process

The process for developing a workflow involves a series of phases. You can follow a
different sequence of phases or skip a phase, depending on the type of workflow that you
are developing. For example, you can create a workflow without custom scripting.

n Best Practices for Developing Workflows

VMware recommends several best practices for developing Orchestrator workflows by
multiple users and in a clustered environment.

n Access Rights for the Orchestrator Client

Only Orchestrator group administrator accounts can access the Java Client.

n Testing Workflows During Development

You can test workflows at any point during the development process, even if you have not
completed the workflow or included an end element.

n Creating and Editing a Workflow

You create workflows in the Orchestrator client and edit them in the workflow editor. The
workflow editor is the IDE of the Orchestrator client for developing workflows.

n Provide General Workflow Information

You provide a workflow name and description, define attributes and certain aspects of
workflow behavior, set the version number, and verify the signature, in the General tab in
the workflow editor.

VMware, Inc. 11

n Defining Attributes and Parameters

After you create a workflow, you must define the global attributes, input parameters, and
output parameters of the workflow.

n Workflow Schema

A workflow schema is a graphical representation of a workflow that shows the workflow as
a flow diagram of interconnected workflow elements. The workflow schema defines the
logical flow of a workflow.

n Developing Plug-Ins

Orchestrator allows integration with management and administration solutions through its
open plug-in architecture. You use the Orchestrator client to run and create plug-in
workflows and access the plug-in API.

n Obtaining Input Parameters from Users When a Workflow Starts

If a workflow requires input parameters, it opens a dialog box in which users enter the
required input parameter values when it runs. You can organize the content and layout, or
presentation, of this dialog box in Presentation tab in the workflow editor.

n (Optional) Requesting User Interactions While a Workflow Runs

A workflow can sometimes require additional input parameters from an outside source while
it runs. These input parameters can come from another application or workflow, or the user
can provide them directly.

n Calling Workflows Within Workflows

Workflows can call on other workflows during their run. A workflow can start another
workflow either because it requires the result of the other workflow as an input parameter
for its own run, or it can start a workflow and let it continue its own run independently.
Workflows can also start a workflow at a given time in the future, or start multiple workflows
simultaneously.

n Running a Workflow on a Selection of Objects

You can automate repetitive tasks by running a workflow on a selection of objects. For
example, you can create a workflow that takes a snapshot of all the virtual machines in a
virtual machine folder, or you can create a workflow that powers off all the virtual machines
on a given host.

n Developing Long-Running Workflows

A workflow in a waiting state consumes system resources because it constantly polls the
object from which it requires a response. If you know that a workflow will potentially wait for
a long time before it receives the response it requires, you can add long-running workflow
elements to the workflow.

n Configuration Elements

A configuration element is a list of attributes you can use to configure constants across a
whole Orchestrator server deployment.

Developing with VMware vRealize Orchestrator

VMware, Inc. 12

n Validating Workflows

Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors
in the workflow and checks that the data flows from one element to the next correctly.

n Debugging Workflows

Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the
input and output parameters and attributes at the start of any activity, replace parameter or
attribute values during a workflow run in edit mode, and resume a workflow from the last
failed activity.

n Running Workflows

An Orchestrator workflow runs according to a logical flow of events.

n Resuming a Failed Workflow Run

If a workflow fails, Orchestrator provides an option to resume the workflow run from the last
failed activity.

n Generate Workflow Documentation

You can export documentation in PDF format about a workflow or a workflow folder that
you select at any time.

n Use Workflow Version History

You can use version history to revert a workflow to a previously saved state. You can revert
the workflow state to an earlier or a later workflow version. You can also compare the
differences between the current state of the workflow and a saved version of the workflow.

n Develop a Simple Example Workflow

Developing a simple example workflow demonstrates the most common steps in the
workflow development process.

n Develop a Complex Workflow

Developing a complex example workflow demonstrates the most common steps in the
workflow development process and more advanced scenarios, such as creating custom
decisions and loops.

Key Concepts of Workflows

Workflows consist of a schema, attributes, and parameters. The workflow schema is the main
component of a workflow as it defines all the workflow elements and the logical connections
between them. The workflow attributes and parameters are the variables that workflows use to
transfer data. Orchestrator saves a workflow token every time a workflow runs, recording the
details of that specific run of the workflow.

Workflow Parameters

Workflows receive input parameters and generate output parameters when they run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 13

Input Parameters

Most workflows require a certain set of input parameters to run. An input parameter is an
argument that the workflow processes when it starts. The user, an application, another workflow,
or an action passes input parameters to a workflow for the workflow to process when it starts.

For example, if a workflow resets a virtual machine, the workflow requires as an input parameter
the name of the virtual machine.

Output Parameters

A workflow's output parameters represent the result from the workflow run. Output parameters
can change when a workflow or a workflow element runs. While workflows run, they can receive
the output parameters of other workflows as input parameters.

For example, if a workflow creates a snapshot of a virtual machine, the output parameter for the
workflow is the resulting snapshot.

Workflow Attributes

Workflow elements process data that they receive as input parameters, and set the resulting
data as workflow attributes or output parameters.

Read-only workflow attributes act as global constants for a workflow. Writable attributes act as a
workflow’s global variables.

You can use attributes to transfer data between the elements of a workflow. You can obtain
attributes in the following ways:

n Define attributes when you create a workflow.

n Set the output parameter of a workflow element as a workflow attribute.

n Inherit attributes from a configuration element.

Workflow Schema

A workflow schema is a graphical representation that shows the workflow as a flow diagram of
interconnected workflow elements. The workflow schema is the most important element of a
workflow as it determines its logic.

Workflow Presentation

When users run a workflow, they provide the values for the input parameters of the workflow in
the workflow presentation. When you organize the workflow presentation, consider the type and
number of input parameters of the workflow.

Workflow Tokens

A workflow token represents a workflow that is running or has run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 14

A workflow is an abstract description of a process that defines a generic sequence of steps and a
generic set of required input parameters. When you run a workflow with a set of real input
parameters, you receive an instance of this abstract workflow that behaves according to the
specific input parameters you give it. This specific instance of a completed or a running workflow
is called a workflow token.

Workflow Token Attributes

Workflow token attributes are the specific parameters with which a workflow token runs. The
workflow token attributes are an aggregation of the workflow's global attributes and the specific
input and output parameters with which you run the workflow token.

Phases in the Workflow Development Process

The process for developing a workflow involves a series of phases. You can follow a different
sequence of phases or skip a phase, depending on the type of workflow that you are developing.
For example, you can create a workflow without custom scripting.

Generally, you develop a workflow through the following phases.

1 Create a new workflow or create a duplicate of an existing workflow from the standard
library.

2 Provide general information about the workflow.

3 Define the input parameters of the workflow.

4 Lay out and link the workflow schema to define the logical flow of the workflow.

5 Bind the input and output parameters of each schema element to workflow attributes.

6 Write the necessary scripts for scriptable task elements or custom decision elements.

7 Create the workflow presentation to define the layout of the input parameters dialog box that
the users see when they run the workflow.

8 Validate the workflow.

Best Practices for Developing Workflows

VMware recommends several best practices for developing Orchestrator workflows by multiple
users and in a clustered environment.

n Each developer has a dedicated test standalone Orchestrator instance for creating and
developing workflows.

n Workflows are saved as maven projects on a shared source code control system.

n To ensure optimal performance of the Orchestrator production deployment, it is best to
import workflows in a scheduled window.

Developing with VMware vRealize Orchestrator

VMware, Inc. 15

n When importing workflows to an Orchestrator cluster, connect the Orchestrator client to one
of the nodes by using their local host name or IP address, instead of the address of the load
balancer virtual server.

Note Any modifications of a workflow take effect with the next workflow run.

Access Rights for the Orchestrator Client

Only Orchestrator group administrator accounts can access the Java Client.

Testing Workflows During Development

You can test workflows at any point during the development process, even if you have not
completed the workflow or included an end element.

By default, Orchestrator checks that a workflow is valid before you can run it. You can deactivate
automatic validation during workflow development, to run partial workflows for testing purposes.

Note Do not forget to reactivate automatic validation when you finish developing the workflow.

Procedure

1 In the Orchestrator client menu, click Tools > User preferences.

2 Click the Workflows tab.

3 Deselect the Validate workflow before running it check box.

Results

You deactivated automatic workflow validation.

Creating and Editing a Workflow

You create workflows in the Orchestrator client and edit them in the workflow editor. The
workflow editor is the IDE of the Orchestrator client for developing workflows.

You open the workflow editor by editing an existing workflow.

n Create a Workflow

You can create workflows in the workflows hierarchical list of the Orchestrator client.

n Edit a Workflow

You edit a workflow to make changes to an existing workflow or to develop a new empty
workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 16

n Edit a Workflow from the Standard Library

Orchestrator provides a standard library of workflows that you can use to automate
operations in the virtual infrastructure. The workflows in the standard library are locked in
the read-only state.

n Workflow Editor Tabs

The workflow editor consists of tabs on which you edit the components of the workflows.

Create a Workflow

You can create workflows in the workflows hierarchical list of the Orchestrator client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the workflows hierarchical list, or a folder in the list, and
select Add folder to create a new workflow folder.

4 (Optional) Type the name of the new folder.

5 Right-click the new folder or an existing folder and select New workflow.

6 Name the new workflow and click OK.

Results

A new empty workflow is created in the folder that you chose.

What to do next

You can edit the workflow.

Edit a Workflow

You edit a workflow to make changes to an existing workflow or to develop a new empty
workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow that you want to edit.

4 To open the workflow for editing, right-click the workflow and select Edit.

Results

The workflow editor opens the workflow for editing.

Developing with VMware vRealize Orchestrator

VMware, Inc. 17

Edit a Workflow from the Standard Library

Orchestrator provides a standard library of workflows that you can use to automate operations
in the virtual infrastructure. The workflows in the standard library are locked in the read-only
state.

To edit a workflow from the standard library, you must create a duplicate of that workflow. You
can edit duplicate workflows or custom workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 (Optional) Right-click the root of the hierarchical list of workflow folders and select New
folder to create a folder to contain the workflow to edit.

4 Expand the Library hierarchical list of standard workflows to navigate to the workflow to edit.

5 Right-click the workflow to edit.

The Edit option is dimmed. The workflow is read-only.

6 Right-click the workflow and select Duplicate workflow.

7 Provide a name for the duplicate workflow.

By default, Orchestrator names the duplicate workflow Copy of workflow_name.

8 Click the Workflow folder value to search for a folder in which to save the duplicate
workflow.

Select the folder you created in Step 3. If you did not create a folder, select a folder that is
not in the library of standard workflows.

9 Click Yes or No to copy the workflow version history to the duplicate.

Option Description

Yes The version history of the original workflow is replicated in the duplicate.

No The version of the duplicate reverts to 0.0.0.

10 Click Duplicate to duplicate the workflow.

11 Right-click the duplicate workflow and select Edit.

The workflow editor opens. You can edit the duplicate workflow.

Results

You duplicated a workflow from the standard library. You can edit the duplicate workflow.

Workflow Editor Tabs

The workflow editor consists of tabs on which you edit the components of the workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 18

Table 1-1. Workflow Editor Tabs

Tab Description

Summary Provide general information about the workflow, such as
the workflow name, description, tags, and version number.
The Summary tab can also be used to configure the server
restart behavior and workflow run failure behavior.

Variables Define the variables for your workflow. Variables were
previously known as attributes.

Input/Output Define the input and output parameters of your workflow.
The input parameters provide the data that the workflow
processes during the workflow run. The output parameters
are provided when the workflow run finishes.

Schema Build the workflow. You build the workflow by dragging
workflow schema elements from the workflow palette on
the left side of the Schema tab. By clicking an element in
the schema diagram, you can define and edit the element's
behavior.

Input Form Define the layout of the user input dialog box that appears
when users run a workflow. You arrange the parameters
and variables into presentation steps and tabs to ease
identification of parameters in the input parameters dialog
box. You define the constraints on the input parameters
that users can provide in the presentation by setting the
parameter properties. You can also add external validation
for your workflow by using actions. For more information
on the input form designer, see vRealize Orchestrator Input
Form Designer in Using the VMware vRealize Orchestrator
Client.

Version History View and manage the version history of the workflow.
Compare and restore versions and push and pull workflows
to and from your integrated Git repository. For more
information on using Git in the vRealize Orchestrator Client,
see How Can I Use Git Branching to Manage My vRealize
Orchestrator Object Inventory in Using the VMware
vRealize Orchestrator Client.

Audit View information about events related to the workflow
such as, when it was saved, when a workflow run was
performed, and when a workflow run was finished.

Provide General Workflow Information

You provide a workflow name and description, define attributes and certain aspects of workflow
behavior, set the version number, and verify the signature, in the General tab in the workflow
editor.

Prerequisites

Open a workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 19

Procedure

1 Click the General tab in the workflow editor.

2 Click the Version digits to set a version number for the workflow.

The Version Comment dialog box opens.

3 Type a comment for this version of the workflow and click OK.

For example, type Initial creation if you just created the workflow.

A new version of the workflow is created. You can later revert the state of the workflow to
this version.

4 Define how the workflow behaves if the Orchestrator server restarts by setting the Server
restart behavior value.

n Leave the default value of Resume workflow run to make the workflow resume at the
point at which its run was interrupted when the server stopped.

n Click Resume workflow run and select Do not resume workflow run (set as FAILED) to
prevent the workflow from restarting if the Orchestrator server restarts.

Prevent the workflow from restarting if the workflow depends on the environment in which it
runs. For example, if a workflow requires a specific vCenter Server and you reconfigure
Orchestrator to connect to a different vCenter Server, restarting the workflow after you
restart the Orchestrator server causes the workflow to fail.

5 Type a detailed description of the workflow in the Description text box.

6 Click Save at the bottom of the workflow editor.

A green message at the bottom left of the workflow editor confirms that you saved your
changes.

Results

You defined aspects of the workflow behavior, set the version, and defined the operations that
users can perform on the workflow.

What to do next

You must define the workflow attributes and parameters.

Defining Attributes and Parameters

After you create a workflow, you must define the global attributes, input parameters, and output
parameters of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 20

Workflow attributes store data that workflows process internally. Workflow input parameters are
data provided by an outside source, such as a user or another workflow. Workflow output
parameters are data that the workflow delivers when it finishes its run.

n Define Workflow Parameters

You can use input and output parameters to pass data into and out of the workflow.

n Define Workflow Attributes

Workflow attributes are the data that workflows process.

n Attribute and Parameter Naming Restrictions

You can use OGNL expressions to determine input parameters dynamically when a workflow
runs. The Orchestrator OGNL parser uses certain keywords during OGNL processing that
you cannot use in workflow attribute or parameter names.

Define Workflow Parameters

You can use input and output parameters to pass data into and out of the workflow.

You can define the parameters of a workflow in the workflow editor. The input parameters are
the initial data that the workflow requires to run. Users provide the values for the input
parameters when they run the workflow. The output parameters are the data the workflow
returns when it completes its run.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the appropriate tab in the workflow editor.

n Click Inputs to create input parameters.

n Click Outputs to create output parameters.

2 Right-click inside the parameters tab and select Add parameter.

3 Click the parameter name to change it.

The default name is arg_in_X for input parameters and arg_out_X for output parameters,
where X is a number.

4 (Optional) To change the value of the parameter type, click the value and select one from the
list of available values.

The value for the parameter type is String by default.

5 Add a description for the parameter in the Description text box.

6 (Optional) If you decide that the parameter should be an attribute rather than a parameter,
right-click the parameter and select Move as attribute to change the parameter into an
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 21

Results

You have defined an input or output parameter for the workflow.

What to do next

After you define the workflow's parameters, build the workflow schema.

Define Workflow Attributes

Workflow attributes are the data that workflows process.

Note You can also define workflow attributes in the workflow schema elements when you
create the workflow schema. It is often easier to define an attribute when you create the
workflow schema element that processes it.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor.

The attributes pane appears in the bottom half of the General tab.

2 Right-click in the attributes pane and select Add Attribute.

A new attribute appears in the attributes list, with String as its default type.

3 Click the attribute name to change it.

The default name is attX, where X is a number.

Note Workflow attributes must not have the same name as any of the workflow's
parameters.

4 Click the attribute type to select a new type from a list of possible values.

The default attribute type is String.

5 Click the attribute value to set or select a value according to the attribute type.

6 Add a description of the attribute in the Description text box.

7 If the attribute is a constant rather than a variable, click the check box to the left of the
attribute name to make its value read-only.

The lock icon identifies the column of read-only check boxes.

8 (Optional) If you decide that the attribute should be an input or output parameter rather than
an attribute, right-click the attribute and select Move as INPUT/OUTPUT parameter to
change the attribute into a parameter.

Developing with VMware vRealize Orchestrator

VMware, Inc. 22

Results

You defined an attribute for the workflow.

What to do next

You can define the workflow's input and output parameters.

Attribute and Parameter Naming Restrictions

You can use OGNL expressions to determine input parameters dynamically when a workflow
runs. The Orchestrator OGNL parser uses certain keywords during OGNL processing that you
cannot use in workflow attribute or parameter names.

Using a reserved OGNL keyword as a prefix to an attribute name does not break OGNL
processing. For example, you can name a parameter trueParameter. Reserved keywords are not
case-sensitive.

You cannot use the following keywords in workflow attribute and parameter names.

Table 1-2. Forbidden Keywords in Attribute and Parameter Names

Forbidden Keyword Forbidden Keyword Forbidden Keyword

n abstract

n back_char_esc

n back_char_literal

n boolean

n byte

n char

n char_literal

n class

n _classResolver

n const

n context

n debugger

n dec_digits

n dec_flt

n default

n delete

n digit

n double

n dynamic_subscript

n enum

n eof

n esc

n exponent

n export

n extends

n false

n final

n flt_literal

n flt_suff

n ident

n implements

n import

n in

n int

n int_literal

n interface

n _keepLastEvaluation

n _lastEvaluation

n letter

n long

n _memberAccess

n native

n package

n private

n public

n root

n short

n static

n string_esc

n string_literal

n synchronized

n this

n _traceEvaluations

n true

n _typeConverter

n volatil

n with

n WithinBackCharLiteral

n WithinCharLiteral

n WithinStringLiteral

Developing with VMware vRealize Orchestrator

VMware, Inc. 23

Workflow Schema

A workflow schema is a graphical representation of a workflow that shows the workflow as a
flow diagram of interconnected workflow elements. The workflow schema defines the logical
flow of a workflow.

n View Workflow Schema

You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator
client.

n Building a Workflow in the Workflow Schema

Workflow schemas consist of a sequence of schema elements. Workflow schema elements
are the building blocks of the workflow, and can represent decisions, scripted tasks, actions,
exception handlers, or even other workflows.

n Schema Elements

The workflow editor presents the workflow schema elements in menus on the Schema tab.
You can use the schema elements available in the Schema tab to build a workflow.

n Schema Element Properties

Schema elements have properties that you can define and edit in the Schema tab of the
workflow palette.

n Links and Bindings

Links between elements determine the logical flow of the workflow. Bindings populate
elements with data from other elements by binding input and output parameters to
workflow attributes.

n Decisions

Workflows can implement decision functions that define different courses of action
according to a Boolean true or false statement.

n Exception Handling

Exception handling catches any errors that occur when a schema element runs. Exception
handling defines how the schema element behaves when the error occurs.

n Using Error Handlers

You can use a standard error handler to define the behavior in case an error occurs in a
specific workflow schema element. You can use a global error handler to define the behavior
in case errors that are not caught by standard error handlers occur.

n Foreach Elements and Composite Types

You can insert a Foreach element in the workflow that you develop to run a subworkflow
that iterates over arrays of parameters or attributes. To improve the understanding and
readability of the workflow, you can group several workflow parameters of different types
that are logically connected in a single type that is called a composite type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 24

n Add a Switch Activity to a Workflow

You can add a basic switch activity to a workflow schema that defines the switch cases
based on workflow attributes or parameters.

View Workflow Schema

You view the schema of a workflow in the Schema tab for that workflow in the Orchestrator
client.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Navigate to a workflow in the workflow hierarchical list.

3 Click the workflow.

Information about that workflow appears in the right pane.

4 Select the Schema tab in the right pane.

Results

You see the graphical representation of the workflow.

Building a Workflow in the Workflow Schema

Workflow schemas consist of a sequence of schema elements. Workflow schema elements are
the building blocks of the workflow, and can represent decisions, scripted tasks, actions,
exception handlers, or even other workflows.

You build workflows in the workflow editor by dragging schema elements from the workflow
palette on the left of the workflow editor into the workflow schema diagram.

Edit a Workflow Schema

You build a workflow by creating a sequence of schema elements that define the logical flow of
the workflow.

By default, all elements in the workflow schema are linked. Links between the elements are
represented as arrows. When you add a new element to the workflow schema, you must drag it
onto an arrow or an existing workflow element that is not linked to a next element. After you add
workflow elements to the schema, you can delete existing links and create new links to define the
logical flow of the workflow.

You can copy an element or a selection of elements from the schema of an existing workflow to
the schema of the workflow that you are editing. See Copy Workflow Schema Elements.

A workflow schema must have at least one End workflow element, but it can have several.

Prerequisites

Open a workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 25

Procedure

1 Click the Schema tab in the workflow editor.

2 Drag a schema element from the Generic menu in the left pane, to the workflow schema.

3 Double-click the element you dragged to the workflow schema, type an appropriate name,
and press Enter.

You must provide elements with unique names in the context of the workflow.

You cannot rename Waiting timer, Waiting event, End workflow, or Throw exception
elements.

4 (Optional) Right-click an element in the schema and select Copy.

5 (Optional) Right-click at an appropriate position in the schema and select Paste.

Copying and pasting existing schema elements is a quick way of adding similar elements to
the schema. All of the settings of the copied element appear in the pasted element, except
for the business state. Adjust the pasted element settings accordingly.

6 Drag schema elements from the Basic, Log, or Network menus to the workflow schema.

You can edit the names of the elements in the Basic, Log, or Network menus. You cannot
edit their scripting.

7 Drag schema elements from the Generic menu to the workflow schema.

When you drag actions or workflows to the workflow schema, a dialog box in which you can
search for the action or workflow to insert appears.

8 In the Filter text box, type the name or part of the name of the workflow or action to insert in
the workflow.

The workflows or actions that match the search appear in the dialog box.

9 Double-click a workflow or action to select it.

You inserted the workflow or action in the workflow schema.

10 Repeat this procedure until you have added all of the required schema elements to the
workflow schema.

What to do next

Define the properties of the elements you added to the workflow schema and link and bind them
all together.

Copy Workflow Schema Elements

You can copy an element or a selection of elements from the schema of an existing workflow to
the schema of the workflow that you are editing.

Prerequisites

Open a workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 26

Procedure

1 Click the Schema tab in the workflow editor.

2 From the left pane, select the workflow from which you want to copy schema elements.

n Click All Workflows and select the workflow from the hierarchical list of workflows.

n Type the name of the workflow in the search text box and press Enter.

3 Right-click the selected workflow and select Open.

A window displaying the workflow's properties appears.

4 In the workflow's window, click the Schema tab.

5 Select one or more workflow schema elements, right-click the selection, and select Copy.

6 In the Schema tab of the workflow that you are editing, right-click and select Paste.

Results

You copied workflow schema elements from one workflow to another.

What to do next

You must link and bind the copied schema elements to the existing workflow schema.

Promote Input and Output Parameters

You can promote the input and output parameters of a child element to the parent workflow.

You can promote a custom attribute that you have defined on the General tab of the workflow
editor. You can promote predefined attributes only by replacing an input parameter with an
attribute of matching type.

Note If you promote a predefined attribute and assign a custom value to it, a duplicate attribute
is created to avoid overwriting the value of the original attribute. The duplicate attribute retains
the name of the original attribute and increments the numerical value at the end of the attribute's
name.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add a workflow or an action element to the workflow schema.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current

workflow?

Developing with VMware vRealize Orchestrator

VMware, Inc. 27

3 On the notification, click Setup.

A pop-up window with the available options appears.

4 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from
the Value column.

5 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

6 Click Promote.

Results

You promoted parameters to the parent workflow.

Modify Search Results

You use the Search text box to find elements such as workflows or actions. If a search returns a
partial result, you can modify the number of results that the search returns.

When you use the search for an element, a green message box indicates that the search lists all
the results. A yellow message box indicates that the search lists only partial results.

Procedure

1 (Optional) If you are editing a workflow in the workflow editor, click Save and Close to exit
the editor.

2 From the Orchestrator client menu, select Tools > User preferences.

3 Click the General tab.

4 Type the number of results for searches to return in the Finder Maximum Size text box.

5 Click Save and Close in the User Preferences dialog box.

Results

You modified the number of results that searches return.

Developing with VMware vRealize Orchestrator

VMware, Inc. 28

Schema Elements

The workflow editor presents the workflow schema elements in menus on the Schema tab. You
can use the schema elements available in the Schema tab to build a workflow.

Table 1-3. Schema Elements and Icons

Schema Element
Name Description Icon Location in Workflow Editor

Start Workflow The starting point of the workflow. All
workflows contain this element. A workflow
can have only one start element. Start
elements have one output and no input,
and cannot be removed from the workflow
schema.

Always present on the
Schema tab

Scriptable task General-purpose tasks you define. You
write JavaScript functions in this element.

The Generic workflow
palette

Decision A boolean function. Decision elements take
one input parameter and return either true
or false. The type of decision that the
element makes depends on the type of the
input parameter. Decision elements let the
workflow branch into different directions,
depending on the input parameter the
decision element receives. If the received
input parameter corresponds to an
expected value, the workflow continues
along a certain route. If the input is not the
expected value, the workflow continues on
an alternative path.

The Generic workflow
palette

Custom decision A boolean function. Custom decisions can
take several input parameters and process
them according to custom scripts. Returns
either true or false.

The Generic workflow
palette

Decision activity A boolean function. A decision activity runs
a workflow and binds its output parameters
to a true or a false path.

The Generic workflow
palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 29

Table 1-3. Schema Elements and Icons (continued)

Schema Element
Name Description Icon Location in Workflow Editor

User interaction Lets users pass new input parameters to
the workflow. You can design how the user
interaction element presents the request
for input parameters and place constraints
on the parameters that users can provide.
When a running workflow arrives at a user
interaction element, it enters a passive
state and prompts the user for input. You
can set a timeout period within which the
users must provide input. The workflow
resumes according to the data the user
passes to it, or returns an exception if the
timeout period expires. While it is waiting
for the user to respond, the workflow token
is in the waiting state.

The Generic workflow
palette

Waiting timer Used by long-running workflows. When a
running workflow arrives at a Waiting Timer
element, it enters a passive state. You set
an absolute date at which the workflow
resumes running. While it is waiting for the
date, the workflow token is in the waiting-
signal state.

The Generic workflow
palette

Waiting event Used in long-running workflows. When a
running workflow arrives at a Waiting Event
element, it enters a passive state. You
define a trigger event that the workflow
awaits before it resumes running. While it is
waiting for the event, the workflow token is
in the waiting-signal state.

The Generic workflow
palette

End workflow The end point of a workflow. You can have
multiple end elements in a schema, to
represent the various possible outcomes of
the workflow. End elements have one input
with no output. When a workflow reaches
an End Workflow element, the workflow
token enters the completed state.

The Generic workflow
palette

Thrown exception Creates an exception and stops the
workflow. Multiple occurrences of this
element can be present in the workflow
schema. Exception elements have one
input parameter, which can only be of the
String type, and have no output parameter.
When a workflow reaches an Exception
element, the workflow token enters the
failed state.

The Generic workflow
palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 30

Table 1-3. Schema Elements and Icons (continued)

Schema Element
Name Description Icon Location in Workflow Editor

Workflow note Lets you annotate sections of the
workflow. You can stretch notes to
delineate sections of the workflow. You can
change the background color of the notes
to differentiate workflow zones. Workflow
notes provide only visual information, to
help you understand the schema.

The Generic workflow
palette

Action element Calls on an action from the Orchestrator
libraries of actions. When a workflow
reaches an action element, it calls and runs
that action.

The Generic workflow
palette

Workflow element Starts another workflow synchronously.
When a workflow reaches a Workflow
element in its schema, it runs that workflow
as part of its own process. The original
workflow continues only after the called
workflow completes its run.

The Generic workflow
palette

Foreach element Runs a workflow on every element from an
array. For example, you can run the
Rename Virtual Machine workflow on all
virtual machines from a folder.

The Generic workflow
palette

Asynchronous
workflow

Starts a workflow asynchronously. When a
workflow reaches an asynchronous
workflow element, it starts that workflow
and continues its own run. The original
workflow does not wait for the called
workflow to complete.

The Generic workflow
palette

Schedule workflow Creates a task to run the workflow at a set
time, and then the workflow continues its
run.

The Generic workflow
palette

Nested workflows Starts several workflows simultaneously.
You can decide to nest local workflows and
remote workflows that are in a different
Orchestrator server. You can also run
workflows with different credentials. The
workflow waits for all the nested workflows
to complete before continuing its run.

The Generic workflow
palette

Handle error Handles an error for a specific workflow
element. The workflow can handle the error
by creating an exception, calling another
workflow, or running a custom script.

The Generic workflow
palette

Default error
handler

Handles workflow errors that are not
caught by standard error handlers. You can
use any available schema elements to
handle errors.

The Generic workflow
palette

Developing with VMware vRealize Orchestrator

VMware, Inc. 31

Table 1-3. Schema Elements and Icons (continued)

Schema Element
Name Description Icon Location in Workflow Editor

Switch Switches to alternative workflow paths,
based on a workflow attribute or
parameter.

The Generic workflow
palette

Pre-Defined Task Non-editable scripted elements that
perform standard tasks that workflows
commonly use. The following tasks are
predefined:

Basic

n Sleep

n Change credential

n Wait until date

n Wait for custom event

n Send custom event

n Increase counter

n Decrease counter

Log

n System log

n System warning

n System error

n Server log

n Server warning

n Server error

n System+Server log

n System+Server warning

n System+Server error

Network

n HTTP post

n HTTP get

The Basic, Log, and Network
workflow palettes

Schema Element Properties

Schema elements have properties that you can define and edit in the Schema tab of the
workflow palette.

Edit the Global Properties of a Schema Element

You define the global properties of a schema element in the element's Info tab.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Click the Schema tab in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 32

2 Select an element to edit by clicking the Edit icon ().

A dialog box that lists the properties of the element appears.

3 Click the Info tab.

4 Provide a name for the schema element in the Name text box.

This is the name that appears in the schema element in the workflow schema diagram.

5 From the Interaction drop-down menu, select a description.

The Interaction property allows you to select between standard descriptions of how this
element interacts with objects outside of the workflow. This property is for information only.

6 (Optional) Provide a business status description in the Business Status text box.

The Business Status property is a brief description of what this element does. When a
workflow is running, the workflow token shows the Business Status of each element as it
runs. This feature is useful for tracking workflow status.

7 (Optional) In the Description text box, type a description of the schema element.

Schema Element Properties Tabs

You access the properties of a schema element by clicking on an element that you have dragged
into the workflow schema. The properties of the element appear in tabs at the bottom of the
workflow editor.

Different schema elements have different properties tabs.

Table 1-4. Properties Tabs per Schema Element

Schema Element Property Tab Description Applies to Schema Element Type

Attributes Attributes that elements require
from an external source, such
as the user, an event, or a timer.
The attributes can be a timeout
limit, a time and date, a trigger,
or user credentials.

n User Interaction

n Waiting Event

n Waiting Timer

Decision Defines the decision statement.
The input parameter that the
decision element receives either
matches or does not match the
decision statement, resulting
two possible courses of action.

Decision

End Workflow Stops the workflow, either
because the workflow
completed successfully, or
because it encountered an error
and returned an exception.

n End

n Exception

Developing with VMware vRealize Orchestrator

VMware, Inc. 33

Table 1-4. Properties Tabs per Schema Element (continued)

Schema Element Property Tab Description Applies to Schema Element Type

Exception How this schema element
behaves in the event of an
exception.

n Action

n Asynchronous Workflow

n Exception

n Nested Workflows

n Predefined Task

n Schedule Workflow

n Scriptable Task

n User Interaction

n Waiting Event

n Waiting Timer

n Workflow

External Inputs Input parameters that the user
must provide at a certain
moment while the workflow
runs.

User Interaction

IN The IN binding for this element.
The IN binding defines the way
in which the schema element
receives input from the element
that precedes it in the
workflow.

n Action

n Asynchronous Workflow

n Custom Decision

n Predefined Task

n Schedule Workflow

n Scriptable Task

n Workflow

Info The schema element's general
properties and description. The
information the Info tab
displays depends on the type
of schema element.

n Action

n Asynchronous Workflow

n Custom Decision

n Decision

n Nested Workflows

n Note

n Predefined Task

n Schedule Workflow

n Scriptable Task

n User Interaction

n Waiting Event

n Waiting Timer

n Workflow

OUT The OUT binding for this
element. The OUT binding
defines the way in which the
schema element binds output
parameters to the workflow
attributes or to the workflow
output parameters.

n Action

n Asynchronous Workflow

n Predefined Task

n Schedule Workflow

n Scriptable Task

n Workflow

Developing with VMware vRealize Orchestrator

VMware, Inc. 34

Table 1-4. Properties Tabs per Schema Element (continued)

Schema Element Property Tab Description Applies to Schema Element Type

Presentation Defines the layout of the input
parameters dialog box the user
sees if the workflow needs user
input while it is running.

User Interaction

Scripting Shows the JavaScript function
that defines the behavior of this
schema element. For
Asynchronous Workflow,
Schedule Workflow, and Action
elements this scripting is read-
only. For scriptable task and
custom decision elements, you
edit the JavaScript in this tab.

n Action

n Asynchronous Workflow

n Custom Decision

n Predefined Task

n Schedule Workflow

n Scriptable Task

Visual Binding Shows a graphical
representation of how the
parameters and attributes of
this schema element bind to the
parameters and attributes of
the elements that come before
and after it in the workflow. This
is another representation of the
element's IN and OUT bindings.

n Action

n Asynchronous Workflow

n Predefined Task

n Schedule Workflow

n Scriptable Task

n Workflow

Workflows Selects the workflows to nest. Nested Workflows

Links and Bindings

Links between elements determine the logical flow of the workflow. Bindings populate elements
with data from other elements by binding input and output parameters to workflow attributes.

To understand links and bindings, you must understand the difference between the logical flow
of a workflow and the data flow of a workflow.

Logical Flow of a Workflow

The logical flow of a workflow is the progression of the workflow from one element to the next in
the schema as the workflow runs. You define the logical flow of the workflow by linking elements
in the schema.

The standard path is the path that the workflow takes through the logical flow if all elements run
as expected. The exception path is the path that the workflow takes through the logical flow if an
element does not run as expected.

Different styles of arrows in the workflow schema denote the different paths that the workflow
can take through its logical flow.

n A blue arrow denotes the standard path that the workflow takes from one element to the
next.

Developing with VMware vRealize Orchestrator

VMware, Inc. 35

n A green arrow denotes the path that the workflow takes if a Boolean decision element
returns true.

n A red dotted arrow denotes the path that the workflow takes if a Boolean decision element
returns false.

n A red dashed arrow denotes the exception path that the workflow takes if a workflow
element does not run correctly.

The following figure shows an example workflow schema that demonstrates the different paths
that workflows can take.

Figure 1-1. Different Workflow Paths Through the Logical Flow of the Workflow

This example workflow can take the following paths through its logical flow.

n Standard path, true decision result, no exceptions.

a The decision element returns true.

b The SnapVMsInResourcePool workflow runs successfully.

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

n Standard path, false decision result, no exceptions.

a The decision element returns false.

b The operation the scriptable task element defines runs successfully.

Developing with VMware vRealize Orchestrator

VMware, Inc. 36

c The sendHtmlEmail action runs successfully.

d The workflow ends successfully in the completed state.

n true decision result, exception.

a The decision element returns true.

b The SnapVMsInResourcePool workflow encounters an error.

c The workflow returns an exception and stops in the failed state.

n false decision result, exception.

a The decision element returns false.

b The operation the Scriptable task element defines encounters an error.

c The workflow returns an exception and stops in the failed state.

Element Links

Links connect schema elements and define the logical flow of the workflow from one element to
the next.

Elements can usually set only one outgoing link to another element in the workflow and one
exception link to an element that defines its exception behavior. The outgoing link defines the
standard path of the workflow. The exception link defines the exception path of the workflow. In
most cases, a single schema element can receive incoming standard path links from multiple
elements.

The following elements are exceptions to the preceding statements.

n The Start Workflow element cannot receive incoming links and has no exception link.

n Exception elements can receive multiple incoming exception links, and have no outgoing or
exception links.

n Decision elements have two outgoing links that define the paths the workflow takes
depending on the decision's true or false result. Decisions have no exception link.

n End Workflow elements cannot have outgoing links or exception links.

Create Standard Path Links

Standard path links determine the normal run of the workflow.

When you link one element to another, you always link the elements in the order in which they
run in the workflow. You always start from the element that runs first to create a link between
two elements.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the Schema tab of the workflow editor contains elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 37

Procedure

1 Place the pointer on the element that you want to connect to another element.

A blue and a red arrow appear on the element's right.

2 Place the pointer on the blue arrow.

The blue arrow enlarges.

3 Left-click the blue arrow, hold down the left mouse button, and move the pointer to the
target element.

A blue arrow appears between the two elements and a green rectangle appears around the
target element.

4 Release the left mouse button.

The blue arrow remains between the two elements.

Results

A standard path now links the elements.

What to do next

The elements are joined, but you have not defined the data flow. You must define the IN and
OUT bindings to bind incoming and outgoing data to workflow attributes.

Data Flow of a Workflow

The data flow of a workflow is the manner in which workflow element input and output
parameters bind to workflow attributes as each element of the workflow runs. You define the
data flow of a workflow by using schema element bindings.

When an element in the workflow schema runs, it requires data in the form of input parameters. It
takes the data for its input parameters by binding to a workflow attribute that you set when you
create the workflow, or by binding to an attribute that a preceding element in the workflow set
when it ran.

The element processes the data, possibly transforms it, and generates the results of its run in the
form of output parameters. The element binds its resulting output parameters to new workflow
attributes that it creates. Other elements in the schema can bind to these new workflow
attributes as their input parameters. The workflow can generate the attributes as its output
parameters at the end of its run.

The following figure shows a very simple workflow. The blue arrows represent the element
linking and the logical flow of the workflow. The red lines show the data flow of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 38

Figure 1-2. Example of Workflow Data Flow

Input parameters
A

Scriptable
task

Workflow attributes
C

Workflow attributes
E

Scriptable
task

Input parameters
B

Scriptable
task

Workflow attributes
D

Output parameter
F

Scriptable
task

The data flows through the workflow as follows.

1 The workflow starts with input parameters a and b.

2 The first element processes parameter a and binds the result of the processing to workflow
attribute c.

3 The first element processes parameter b and binds the result of the processing to workflow
attribute d.

4 The second element takes workflow attribute c as an input parameter, processes it, and binds
the resulting output parameter to workflow attribute e.

5 The second element takes workflow attribute d as an input parameter, processes it, and
generates output parameter f.

6 The workflow ends and generates workflow attribute f as its output parameter, the result of
its run.

Element Bindings

You must bind all workflow element input and output parameters to workflow attributes. Bindings
set data in the elements, and define the output and exception behavior of the elements. Links
define the logical flow of the workflow, whereas bindings define the data flow.

To set data in an element, generate output parameters from the element after processing, and
handle any errors that might occur when the element runs, you must set the element binding.

IN bindings

Set a schema element's incoming data. You bind the element's local input parameters to
source workflow attributes. The IN tab lists the element's input parameters in the Local
Parameter column. The IN tab lists the workflow attributes to which the local parameter binds

Developing with VMware vRealize Orchestrator

VMware, Inc. 39

in the Source Parameter column. The tab also displays the parameter type and a description
of the parameter.

OUT bindings

Change workflow attributes and generate output parameters when an element finishes its
run. The OUT tab lists the element's output parameters in the Local Parameter column. The
OUT tab lists the workflow attributes to which the local parameter binds in the Source
Parameter column. The tab also displays the parameter type and a description of the
parameter.

Exception bindings

Link to exception handlers if the element encounters an exception when it runs.

IN bindings read values from the bound source parameter. OUT bindings write values into the
bound source parameter.

You must use IN bindings to bind every attribute or input parameter you use in a schema element
to a workflow attribute. If the element changes the values of the input parameters that it receives
when it runs, you must bind them to a workflow attribute by using an OUT binding. Binding the
element's output parameters to workflow elements lets other elements that follow it in the
workflow schema to take those output parameters as their input parameters.

A common mistake when creating workflows is to not bind output parameter values to reflect the
changes that the element makes to the workflow attributes.

Important When you add an element that requires input and output parameters of a type that
you have already defined in the workflow, Orchestrator sets the bindings to these parameters.
You must verify that the parameters that Orchestrator binds are correct, in case the workflow
defines different parameters of the same type to which the element can bind.

Define Element Bindings

After you link elements to create the logical flow of the workflow, you define element bindings to
define how each element processes the data it receives and generates.

Prerequisites

Verify that you have a workflow schema in the Schema tab of the workflow editor, and that you
have created links between the elements.

Procedure

1 Click the Edit icon () of the element on which to set the bindings.

A dialog box that lists the properties of the element appears.

Developing with VMware vRealize Orchestrator

VMware, Inc. 40

2 Click the IN tab.

The contents of the IN tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the IN tab lists the possible
local input parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of input parameters
and attributes you already defined for the workflow by right-clicking in the IN tab and
selecting Bind to workflow parameter/attribute.

n If the required attribute does not exist yet, you can create it by right-clicking in the IN tab
and selecting Bind to workflow parameter/attribute > Create parameter/attribute in
workflow.

3 If an appropriate parameter exists, choose an input parameter to bind, and click the Not set
button in the Source Parameter text box.

A list of possible source parameters and attributes to bind to appears.

4 Choose a source parameter to bind to the local input parameter from the list proposed.

5 (Optional) If you have not defined the source parameter to which to bind, you can create it
by clicking the Create parameter/attribute in workflow link in the parameter selection dialog
box.

6 Click the OUT tab.

The contents of the OUT tab depend on the type of element you selected.

n If you selected a predefined task, workflow, or action element, the OUT tab lists the
possible local output parameters for that type of element, but the binding is not set.

n If you selected another type of element, you can select from a list of output parameters
and attributes you defined for the workflow by right-clicking in the OUT tab and selecting
Bind to workflow parameter/attribute.

n If the required attribute does not exist, you can create it by right-clicking in the IN tab and
selecting Bind to workflow parameter/attribute > Create parameter/attribute in
workflow.

7 Choose a parameter to bind.

8 Click the Source Parameter > Not set button.

9 Choose a source parameter to bind to the input parameter.

10 (Optional) If you did not define the parameter to which to bind, you can create it by clicking
the Create parameter/attribute in workflow button in the parameter selection dialog box.

Results

You defined the input parameters that the element receives and the output parameters that it
generates, and bound them to workflow attributes and parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 41

What to do next

You can create forks in the path of the workflow by defining decisions.

Decisions

Workflows can implement decision functions that define different courses of action according to
a Boolean true or false statement.

Decisions are forks in the workflow. Workflow decisions are made according to inputs provided
by you, by other workflows, by applications, or by the environment in which the workflow is
running. The value of the input parameter that the decision element receives determines which
branch of the fork the workflow takes. For example, a workflow decision might receive the power
status of a given virtual machine as its input. If the virtual machine is powered on, the workflow
takes a certain path through its logical flow. If the virtual machine is powered off, the workflow
takes a different path.

Decisions are always Boolean functions. The only possible outcomes for each decision are true or
false.

Custom Decisions

Custom decisions differ from standard decisions in that you define the decision statement in a
script. Custom decisions return true or false according to the statement you define, as the
following example shows.

if (decision_statement){

 return true;

}else{

 return false;

}

Create Decision Element Links

Decision elements differ from other elements in a workflow. They have only true or false output
parameters. Decision elements have no exception linking.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one
decision element that is not linked to other elements.

Procedure

1 Place the mouse pointer on a decision element to link it to two other elements that define
two possible branches in the workflow.

A blue arrow and a red arrow appear on the element's right.

Developing with VMware vRealize Orchestrator

VMware, Inc. 42

2 Place the pointer on the blue arrow, and while keeping the left mouse button pressed, move
the pointer to the target element.

A green arrow appears between the two elements and the target element turns green. The
green arrow represents the true path the workflow takes if the input parameter or attribute
received by the decision element matches the decision statement.

3 Release the left mouse button.

The green arrow remains between the two elements. You have defined the path the
workflow takes when the decision element receives the expected value.

4 Place the pointer on the decision element, hold down the left mouse button, and move the
pointer to the target element.

A dotted red arrow appears between the two elements and the target element turns green.
The red arrow represents the false path that the workflow takes if the input parameter or
attribute received by the decision element does not match the decision statement.

5 Release the left mouse button.

The dotted red arrow remains between the two elements. You have defined the path the
workflow takes when the decision element receives unexpected input.

Results

You have defined the possible true or false paths that the workflow takes depending on the
input parameter or attribute the decision element receives.

What to do next

Define the decision statement. See Create Workflow Branches Using Decisions.

Delete a Linked Decision Element

When you delete a linked decision element from a workflow schema, you must specify which
workflow paths to delete.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements, including at least one
decision element with true and false paths.

Procedure

1 Select the decision element and press Delete.

A dialog box with available options appears.

Developing with VMware vRealize Orchestrator

VMware, Inc. 43

2 Select which decision branch to delete.

Option Description

Success branch The decision element and all elements that follow the true decision path are
deleted from the workflow schema.

Failure branch The decision element and all elements that follow the false decision path
are deleted from the workflow schema.

Both branches The decision element and all elements that follow both decision paths are
deleted from the workflow schema.

None Only the decision element and its links are deleted from the workflow
schema. All elements that follow both decision paths remain in the workflow
schema.

3 Click OK.

Create Workflow Branches Using Decisions

Decision elements are simple Boolean functions that you use to create branches in workflows.
Decision elements determine whether the input received matches the decision statement you
set. As a function of this decision, the workflow continues its course along one of two possible
paths.

Prerequisites

Verify that you have a decision element linked to two other elements in the schema in the
workflow editor before you define the decision.

Procedure

1 Click the Edit icon () of the decision element.

A dialog box that lists the properties of the decision element appears.

2 Click the Decision tab in the dialog box.

3 Click the Not Set (NULL) link to select the source input parameter for this decision.

A dialog box that lists all the attributes and input parameters defined in this workflow
appears.

4 Select an input parameter from the list by double-clicking it.

5 If you did not define the source parameter to which to bind, create it by clicking the Create
attribute/parameter in workflow link in the parameter selection dialog box.

6 Select a decision statement from the drop-down menu.

The statements that the menu proposes are contextual, and differ according to the type of
input parameter selected.

Developing with VMware vRealize Orchestrator

VMware, Inc. 44

7 Add a value that you want the decision statement to match.

Depending on the input type and the statement you select, you might see a Not Set (NULL)
link in the value text box. Clicking this link gives you a predefined choice of values. Otherwise,
for example for Strings, this is a text box in which you provide a value.

Results

You defined a statement for the decision element. When the decision element receives the input
parameter, it compares the value of the input parameter to the value in the statement and
determines whether the statement is true or false.

What to do next

You must set how the workflow handles exceptions.

Exception Handling

Exception handling catches any errors that occur when a schema element runs. Exception
handling defines how the schema element behaves when the error occurs.

All elements in a workflow, except for decisions and start and end elements, contain a specific
output parameter type that serves only for handling exceptions. If an element encounters an
error during its run, it can send an error signal to an exception handler. Exception handlers catch
the error and react according to the errors they receive. If the exception handlers you define
cannot handle a certain error, you can bind an element's exception output parameter to an
Exception element, which ends the workflow run in the failed state.

Exceptions act as a try and catch sequence within a workflow element. If you do not need to
handle a given exception in an element, you do not have to bind that element's exception output
parameter.

The output parameter type for exceptions is always an errorCode object.

Create Exception Bindings

Elements can set bindings that define how the workflow behaves if it encounters an error in that
element.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Procedure

1 Place the pointer on the element for which you want to define exception binding.

A red arrow appears on the element's right.

Developing with VMware vRealize Orchestrator

VMware, Inc. 45

2 Place the pointer on the red arrow until it enlarges, hold down the left mouse button, and
drag the red arrow to the target element.

A red dashed arrow links the two elements. The target element defines the behavior of the
workflow if the element that links to it encounters an error.

3 Click the Edit icon () of the element that links to the exception handling element.

4 Click the Exception tab in the schema element properties tabs.

5 To set the Output exception binding value, click Not set.

n Select a parameter to bind to the exception output parameter from the exception
attribute binding dialog box and click Select.

n Click Create parameter/attribute in workflow to create an exception output parameter.

6 Click the target element that defines the exception handling behavior.

7 Click the IN tab in the schema element properties tabs.

8 Click the Bind to workflow parameter/attribute icon ().

The dialog box for selecting the input parameter appears.

9 Select the exception output parameter and click Select.

10 Click the OUT tab for the exception handling element in the schema element properties tabs.

11 Define the behavior of the exception handling element.

n Click the Bind to workflow parameter/attribute icon () to select an output parameter
for the exception handling element to generate.

n Click the Scripting tab and use JavaScript to define the behavior of the exception
handling element.

Results

You defined how the element handles exceptions.

What to do next

You must define how to obtain input parameters from users when they run the workflow.

Using Error Handlers

You can use a standard error handler to define the behavior in case an error occurs in a specific
workflow schema element. You can use a global error handler to define the behavior in case
errors that are not caught by standard error handlers occur.

Developing with VMware vRealize Orchestrator

VMware, Inc. 46

Add an Error Handler to a Workflow

You can define how errors in a specific workflow element are handled during a workflow run by
adding an error handler to the workflow element. You can add an error handler only to workflow
elements that do not have a specified error path.

Important Workflows that contain a Handle error element are not compatible with Orchestrator
5.5.x or earlier.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Handle error element to the appropriate element in the workflow schema.

A dialog box appears.

2 From the drop-down menu in the dialog box, select how errors should be handled.

Option Description

Throw exception When an error occurs, an exception is thrown. You can modify the exception
binding.

Call a workflow When an error occurs, a selected workflow runs.

Custom script When an error occurs, a custom script runs.

3 Click Select.

Results

You added an error handler to a workflow. When the workflow reaches this element, it performs
the selected action before ending its run.

Add a Global Error Handler to a Workflow

You can define how errors, which are not caught by standard error handlers, are handled during
a workflow run by adding a global error handler to the workflow schema. You can add one global
error handler to a workflow schema.

Important Workflows that contain a Default error handler element are not compatible with
Orchestrator 5.5.x or earlier.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 47

n Add some elements to the workflow schema.

Procedure

1 Drag a Default error handler element to the workflow schema.

2 (Optional) Add schema elements between the Default error handler element and the Throw
exception element to specify how global workflow errors are handled.

Results

You added a global error handler to a workflow. When an error that is not caught by standard
error handlers in the workflow occurs, the global error handler performs the specified actions
before ending the workflow run.

Foreach Elements and Composite Types

You can insert a Foreach element in the workflow that you develop to run a subworkflow that
iterates over arrays of parameters or attributes. To improve the understanding and readability of
the workflow, you can group several workflow parameters of different types that are logically
connected in a single type that is called a composite type.

Using Foreach Elements

A Foreach element runs a subworkflow iteratively over an array of input parameters or attributes.
You can select the arrays over which the subworkflow is run, and can pass the values for the
elements of such an array when you run the workflow. The subworkflow runs as many times as
the number of elements that you have defined in the array.

If you have a configuration element that contains an array of attributes, you can run a workflow
that iterates over these attributes in a Foreach element.

For example, suppose that you have 10 virtual machines in a folder that you want to rename. To
do this, you must insert a Foreach element in a workflow and define the Rename virtual machine
workflow as a subworkflow in the element. The Rename virtual machine workflow takes two input
parameters, a virtual machine and its new name. You can promote these parameters as input to
the current workflow, and as a result, they become arrays over which the Rename virtual
machine workflow will iterate. When you run your workflow, you can specify the 10 virtual
machines in the folder and their new names. Every time the workflow runs, it takes an element
from the array of the virtual machines and an element from the array of the new names for the
virtual machines.

Using Composite Types

A composite type is a group of more than one input parameter or attribute that are connected
logically but are of different types. In a Foreach element, you can bind a group of parameters as
a composite value. In this way, the Foreach element takes the values for the grouped parameters
at once in every subsequent run of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 48

For example, suppose that you are about to rename a virtual machine. You need the virtual
machine object and its new name. If you have to rename multiple virtual machines, you need two
arrays, one for the virtual machines and one for their names. These two arrays are not explicitly
connected. A composite type lets you have one array where each element contains both the
virtual machine and its new name. In this way, the connection between those two parameters in
case of multiple values is specified explicitly and not implied by the workflow schema.

Note You cannot run a workflow that contains composite types from the vSphere Web Client.

Define a Foreach Element

If you want to run a subworkflow multiple times by passing different values for its parameters or
attributes in every subsequent run, you can insert a Foreach element in the parent workflow.

When you insert a Foreach element, you must select at least one array over which the Foreach
element iterates. An array element can have different values for each subsequent workflow run.

If the subworkflow has output parameters, you should select the output parameters of the
Foreach element in which to accumulate workflow outputs , so that the subworkflow can iterate
over them as well.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 In the workflow editor, select the Schema tab.

2 From the Generic menu, drag a Foreach element in the workflow schema.

3 Select a workflow from the Chooser dialog box.

The following notification appears at the top of the schema pane.

Do you want to add the activity's parameters as input/output to the current

workflow?

4 On the notification, click Setup.

A pop-up window with the available options appears.

5 Select the mapping type for each input parameter.

Option Description

Input The argument is mapped to an input workflow parameter.

Skip The argument is mapped to a NULL value.

Value The argument is mapped to an attribute with a value that you can set from
the Value column.

Developing with VMware vRealize Orchestrator

VMware, Inc. 49

6 Select the mapping type for each output parameter.

Option Description

Output The argument is mapped to an output workflow parameter.

Skip The argument is mapped to a NULL value.

Local variable The argument is mapped to an attribute.

7 Click Promote.

8 Right-click the Foreach element and select Synchronize > Synchronize presentation.

A confirmation dialog box appears.

9 Click Ok to propagate the presentation of the Foreach element to the current workflow.

A dialog box displays information about the outcome of the operation.

10 On the Inputs tab, verify that the subworkflow's parameters are added as elements of type
array.

11 On the Outputs tab, verify that the subworkflow's parameters are added as elements of type
array.

Results

You defined a Foreach element in your workflow. The Foreach element runs a workflow that
takes as parameters every element from the array of parameters or attributes that you have
defined.

For parameters or attributes that are not defined as arrays, the workflow takes the same value in
every subsequent run.

Example: Rename Virtual Machines by Using a Foreach Element

You can use a Foreach element to rename several virtual machines at once. You have to insert a
Foreach element in a workflow and promote the vm and the newName parameters as input to the
current workflow. In this way, when you run the workflow, you specify the virtual machines to
rename and the new names for the virtual machines. The virtual machines are included as
elements in the array that you created for the vm parameter. The new names for the virtual
machines are included in the array that you created for the newName parameter.

Define a Composite Type in a Foreach Element

You can group multiple workflow parameters that are connected logically in a new type that is
called a composite type. You can use a Foreach element to bind a group of parameters as a
composite value to connect several arrays of parameters in a single array.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that you have a Foreach element in your workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 50

Procedure

1 Select the IN or the OUT tab of the Foreach element.

2 Select a local parameter that you want to group with other local parameters in a composite
type.

3 Click Bind a group of parameters as composite value at the top of the IN or the OUT tab.

4 In the Bindings pane, select the parameters that you want to group as a composite type.

5 Select Bind as iterator.

You have set the Foreach element to iterate over an array of the composite type.

6 Click Accept.

Results

You defined a composite type and made sure that the workflow will iterate over an array of this
composite type. Parameters that are grouped as a composite type are named
composite_type_name.parameter_name. For example, if you create a snapshots composite type,
the parameters that are group in the type can be snapshots.vm[in-parameter] or
snapshots.name[in-parameter]. Every element from the array of the composite type contains a
single instance of every parameter that you grouped in the composite type.

Example: Rename Virtual Machines

Suppose that you want to rename 10 virtual machines at a time. For this, you insert a Foreach
element in a workflow and select the Rename virtual machine workflow in the element. You
create a composite type to connect the vm and the newName parameters explicitly. You bind the
composite type as an iterator, thus creating a single array that contains both the vm and the
newName parameter.

Add a Switch Activity to a Workflow

You can add a basic switch activity to a workflow schema that defines the switch cases based on
workflow attributes or parameters.

Every switch activity can have multiple switch cases. Every switch case is defined by a condition
related to an attribute or a parameter. If the condition is fulfilled, the workflow run switches to a
corresponding workflow element that you define. If none of the specified conditions are fulfilled,
the workflow run switches to a default workflow element that you define.

Important Workflows that contain a Switch element are not compatible with Orchestrator 5.5.x
or earlier.

Prerequisites

Verify that the Schema tab of the workflow editor contains elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 51

Procedure

1 Drag a Switch element to the appropriate element in the workflow schema.

2 Click the Edit icon () of the Switch element.

3 In the Cases tab, add or delete switch cases.

You can change the priority of switch cases.

4 Define the condition for each switch case.

5 Select the corresponding workflow element for each switch case.

6 Select the default workflow element to switch to.

7 Click Close.

8 Click Save.

Results

You defined the switch case conditions and workflow paths.

Developing Plug-Ins

Orchestrator allows integration with management and administration solutions through its open
plug-in architecture. You use the Orchestrator client to run and create plug-in workflows and
access the plug-in API.

Overview of Plug-Ins

Orchestrator plug-ins must include a standard set of components and must adhere to a standard
architecture. These practices help you to create plug-ins for the widest possible variety of
external technologies.

n Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

n Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an
Orchestrator plug-in. You can create a plug-in for any technology that exposes an API that
you can map into JavaScript objects that Orchestrator can use.

n Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the
plugged-in technology to the Orchestrator platform.

Developing with VMware vRealize Orchestrator

VMware, Inc. 52

n Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the
plugged-in technology to Orchestrator inventory objects, scripting types, scripting classes,
scripting methods, and attributes. The vso.xml file also defines the configuration and start-
up behavior of the plug-in.

n Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in
adapter serves as the datastore for the plugged-in technology in the Orchestrator server,
creates the plug-in factory, and manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

n Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the
plugged-in technology. Orchestrator can modify and interact with objects that it finds in the
plugged-in technology by running workflows on the finder objects.

n Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology.
Scripting objects from plug-ins appear in the Orchestrator Javascript API and you can use
them in scripted elements in workflows and actions.

n Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the
plugged-in technology. Orchestrator monitors events by implementing event handlers.

Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

The bottom three layers of a Orchestrator plug-in, which are the infrastructure classes, wrapping
classes, and scripting objects, implement the connection between the plugged-in technology and
Orchestrator.

The user-visible parts of a Orchestrator plug-in are the top three layers, which are actions,
building blocks, and high-level workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 53

Figure 1-3. Structure of an Orchestrator Plug-In

High level workflow

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

Infrastructure classes

A set of classes that provide the connection between the plugged-in technology and
Orchestrator. The infrastructure classes include the classes to implement according to the
plug-in definition, such as plug-in factory, plug-in adaptor, and so on. The infrastructure
classes also include the classes that provide functionality for common tasks and objects such
as helpers, caching, inventory, and so on.

Wrapping classes

A set of classes that adapt the object model of the plugged-in technology to the object
model that you want to expose inside Orchestrator.

Scripting objects

JavaScript object types that provide access to the wrapping classes, methods, and attributes
in the plugged-in technology. In the vso.xml file, you define which wrapping classes,
attributes, and methods from the plugged-in technology will be exposed to Orchestrator.

Actions

A set of JavaScript functions that you can use directly in workflows and scripting tasks.
Actions can take multiple input parameters and have a single return value.

Building block workflows

A set of workflows that cover all generic functionality that you want to provide with the plug-
in. Typically, a building block workflow represents an operation in the user interface of the
orchestrated technology. The building block workflows can be used directly or can be
included inside high-level workflows.

High-level workflows

Developing with VMware vRealize Orchestrator

VMware, Inc. 54

A set of workflows that cover specific functionality of the plug-in. You can provide high-level
workflows to meet concrete requirements or to show complex examples of the plug-in usage.

Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an
Orchestrator plug-in. You can create a plug-in for any technology that exposes an API that you
can map into JavaScript objects that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator
scripting API. If an external technology exposes a Java API, you can map the API directly to
JavaScript for Orchestrator to use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by
using WSDL (Web service definition language), REST (Representational state transfer), or a
messaging service to integrate the exposed API with Java objects. You then map the integrated
Java objects to JavaScript for Orchestrator to use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-
ins for external products even if you only have access to binary code, for example in Java
archives (JAR files), rather than source code.

Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the plugged-
in technology to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations.
You map the objects and operations defined in the adapter, factory, and event implementations
to Orchestrator objects in an XML definition file named vso.xml. The vso.xml file maps objects
and functions from the plugged in technology to JavaScript scripting objects that appear in the
Orchestrator JavaScript API. The vso.xml file also maps object types from the plugged-in
technology to finders, that appear in the Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module

The plug-in itself, as defined by a set of Java classes, a vso.xml file, and packages of the
workflows and actions that interact with the objects that you access through the plug-in. The
plug-in module is mandatory.

Plug-In Adapter

Defines the interface between the plugged-in technology and the Orchestrator server. The
adapter is the entry point of the plug-in to the Orchestrator platform. The adapter creates the
plug-in factory, manages the loading and unloading of the plug-in, and manages the events
that occur on the objects in the plugged-in technology. The plug-in adapter is mandatory.

Plug-In Factory

Developing with VMware vRealize Orchestrator

VMware, Inc. 55

Defines how Orchestrator finds objects in the plugged-in technology and performs
operations on them. The adapter creates a factory for the client session that opens between
Orchestrator and a plugged-in technology. The factory allows you either to share a session
between all client connections or to open one session per client connection. The plug-in
factory is mandatory.

Configuration

Orchestrator does not define a standard way for the plug-in to store its configuration. You
can store configuration information by using Windows Registries, static configuration files,
storing information in a database, or in XML files. Orchestrator plug-ins can be configured by
running configuration workflows in the Orchestrator client.

Finders

Interaction rules that define how Orchestrator locates and represents the objects in the
plugged-in technology. Finders retrieve objects from the set of objects that the plugged-in
technology exposes to Orchestrator. You define in the vso.xml file the relations between
objects to allow you to navigate through the network of objects. Orchestrator represents the
object model of the plugged-in technology in the Inventory tab. Finders are mandatory if you
want to expose objects in the plugged-in technology to Orchestrator.

Scripting Objects

JavaScript object types that provide access to the objects, operations, and attributes in the
plugged-in technology. Scripting objects define how Orchestrator accesses the object model
of the plugged-in technology through JavaScript. You map the classes and methods of the
plugged-in technology to JavaScript objects in the vso.xml file. You can access the
JavaScript objects in the Orchestrator scripting API and integrate them into Orchestrator
scripted tasks, actions, and workflows. Scripting objects are mandatory if you want to add
scripting types, classes, and methods to the Orchestrator JavaScript API.

Inventory

Instances of objects in the plugged-in technology that Orchestrator locates by using finders
appear in the Inventory view in the Orchestrator client. You can perform operations on the
objects in the inventory by running workflows on them. The inventory is optional. You can
create a plug-in that only adds scripting types and classes to the Orchestrator JavaScript API
and does not expose any instances of objects in the inventory.

Events

Changes in the state of an object in the plugged-in technology. Orchestrator can listen
passively for events that occur in the plugged-in technology. Orchestrator can also actively
trigger events in the plugged-in technology. Events are optional.

Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting

Developing with VMware vRealize Orchestrator

VMware, Inc. 56

methods, and attributes. The vso.xml file also defines the configuration and start-up behavior of
the plug-in.

The vso.xml file performs the following principal roles.

Start-Up and Configuration Behavior

Defines the manner in which the plug-in starts and locates any configuration implementations
that the plug-in defines. Loads the plug-in adapter.

Inventory Objects

Defines the types of objects that the plug-in accesses in the plugged-in technology. The
finder methods of the plug-in factory implementation locate instances of these objects and
display them in the Orchestrator inventory.

Scripting Types

Adds scripting types to the Orchestrator JavaScript API to represent the different types of
object in the inventory. You can use these scripting types as input parameters in workflows.

Scripting Classes

Adds classes to the Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Scripting Methods

Adds methods to the Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Scripting Attributes

Adds the attributes of the objects in the plugged-in technology to the Orchestrator
JavaScript API that you can use in scripted elements in workflows, actions, policies, and so
on.

Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in
adapter serves as the datastore for the plugged-in technology in the Orchestrator server, creates
the plug-in factory, and manages events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the
plugged-in technology. The IPluginAdaptor interface provides methods that you use to perform
these tasks.

The plug-in adapter performs the following principal roles.

Creates a factory

Developing with VMware vRealize Orchestrator

VMware, Inc. 57

The most important role of the plug-in adapter is to load and unload one plug-in factory
instance for every connection from Orchestrator to the plugged-in technology. The plug-in
adapter class calls the IPluginAdaptor.createPluginFactory() method to create an instance of
a class that implements the IPluginFactory interface.

Manages events

The plug-in adapter is the interface between the Orchestrator server and the plugged-in
technology. The plug-in adapter manages the events that Orchestrator performs or watches
for on the objects in the plugged-in technology. The adapter manages events through event
publishers. Event publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the IPluginAdaptor.registerEventPublisher() method. Event
publishers set triggers and gauges on objects in the plugged-in technology, to allow
Orchestrator to launch defined actions if certain events occur on the object, or if the object's
values pass certain thresholds. Similarly, you can define PluginTrigger and PluginWatcher
instances that define events that Wait Event elements in long-running workflows await.

Sets the plug-in name

You provide a name for the plug-in in the vso.xml file. The plug-in adapter gets this name
from the vso.xml file and publishes it in the Orchestrator client Inventory view.

Installs licenses

You can call methods to install any license files that the plugged-in technology requires in the
adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of
the plug-in API, see Orchestrator Plug-In API Reference.

Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from
the Orchestrator plug-in API. The plug-in factory class that you create defines the finder
functions that Orchestrator uses to access objects in the plugged-in technology. The factory
allows the Orchestrator server to find objects by their ID, by their relation to other objects, or by
searching for a query string.

The plug-in factory performs the following principal tasks.

Finds objects

You can create functions that find objects according to their name and type. You find objects
by name and type by using the IPluginFactory.find() method.

Finds objects related to other objects

Developing with VMware vRealize Orchestrator

VMware, Inc. 58

You can create functions to find objects that relate to a given object by a given relation type.
You define relations in the vso.xml file. You can also create finders to find dependent child
objects that relate to all parents by a given relation type. You implement the
IPluginFactory.findRelation() method to find any objects that are related to a given parent
object by a given relation type. You implement the IPluginFactory.hasChildrenInRelation()
method to discover whether at least one child object exists for a parent instance.

Define queries to find objects according to your own criteria

You can create object finders that implement query rules that you define. You implement the
IPluginFactory.findAll() method to find all objects that satisfy query rules you define when
the factory calls this method. You obtain the results of the findAll() method in a QueryResult
object that contains a list of all of the objects found that match the query rules you define.

For more information about the IPluginFactory interface, all of its methods, and all of the other
classes of the plug-in API, see Orchestrator Plug-In API Reference.

Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in
technology by running workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique
identifier so that Orchestrator finder objects can find them. The plugged-in technology provides
the unique identifiers for the object instances as strings. When a workflow runs, Orchestrator sets
the unique identifiers of the objects that it finds as workflow attribute values. Workflows that
require an object of a given type as an input parameter run on a specific instance of that type of
object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a
prefix. For example, the VirtualMachine managed object type from the vCenter Server API
appears in Orchestrator as the VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter
Server plug-in by implementing a finder object that uses the id attribute of the virtual machine as
its unique identifier. You can pass this object instance to workflow elements as attribute values.

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent
Orchestrator finder objects in the <finder> elements in the vso.xml file. The <finder> elements
identify the method or function from the plugged-in technology that obtains the unique identifier
for a specific instance of an object. The <finder> elements also define relations between objects,
to find objects by the manner in which they relate to other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Developing with VMware vRealize Orchestrator

VMware, Inc. 59

Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology.
Scripting objects from plug-ins appear in the Orchestrator Javascript API and you can use them
in scripted elements in workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules,
types, and classes. Most finder objects have a scripting object representation. The JavaScript
classes can add methods and attributes to the Orchestrator JavaScript API that represent the
methods and attributes from objects from the API of the plugged-in technology. The plugged-in
technology provides the implementations of the objects, types, classes, attributes, and methods
independently of Orchestrator. For example, the vCenter Server plug-in represents all the objects
from the vCenter Server API as JavaScript objects in the Orchestrator JavaScript API, with
JavaScript representations of all the classes, methods and attributes that the vCenter Server API
defines. You can use the vCenter Server scripting classes and the methods and attributes they
define in Orchestrator scripted functions.

For example, the VirtualMachine managed object type from the vCenter Server API is found by
the VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the
VcVirtualMachine JavaScript class. The VcVirtualMachine JavaScript class in the Orchestrator
JavaScript API defines all of the same methods and attributes as the VirtualMachine managed
object from the vCenter Server API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the
plugged-in technology to equivalent Orchestrator JavaScript objects, types, classes, attributes,
and methods in the <scripting-objects> element in the vso.xml file.

Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the
plugged-in technology. Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways.
The Orchestrator plug-in API allows you to create the following types of event handlers to
monitor events in a plugged-in technology.

Listeners

Passively monitor objects in the plugged-in technology for changes in their state. The
plugged-in technology or the plug-in implementation defines the events that listeners
monitor. Listeners do not initiate events, but notify Orchestrator when the events occur.
Listeners detect events either by polling the plugged-in technology or by receiving
notifications from the plugged-in technology. When events occur, Orchestrator policies or
workflows that are waiting for the event can react by starting operations in the Orchestrator
server. Listener components are optional.

Policies

Monitor certain events in the plugged-in technology and start operations in the Orchestrator
server if the events occur. Policies can monitor policy triggers and policy gauges. Policy

Developing with VMware vRealize Orchestrator

VMware, Inc. 60

triggers define an event in the plugged-in technology that, when it occurs, causes a running
policy to start an operation in the Orchestrator server, for example running a workflow. Policy
gauges define ranges of values for the attributes of an object in the plugged-in technology
that, when exceeded, cause Orchestrator to start an operation. Policies are optional.

Workflow triggers

If a running workflow contains a Wait Event element, when it reaches that element it
suspends its run and waits for an event to occur in a plugged-in technology. Workflow
triggers define the events in the plugged-in technology that Waiting Event elements in
workflows await. You register workflow triggers with watchers. Workflow triggers are
optional.

Watchers

Watch workflow triggers for a certain event in the plugged-in technology, on behalf of a
Waiting Event element in a workflow. When the event occurs, the watchers notify any
worklows that are waiting for that event. Watchers are optional.

Contents and Structure of a Plug-In

Orchestrator plug-ins must contain a standard set of components and conform to a standard file
structure. For a plug-in to conform to the standard file structure, it must include specific folders
and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the
objects in the plugged-in technology. And, you map all of the objects and functions of the
plugged-in technology to corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to
Orchestrator. Every object that the plug-in finds in the plugged-in technology must have a unique
identifier that you provide. You define the object names in the finder elements and in the object
elements in the vso.xml file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case,
the file must be renamed with a .dar extension.

Note You can use the Orchestrator Control Center to import a DAR file to the Orchestrator
server.

n Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

n Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in
technology. You must include a reference to every type of object or operation to expose to
Orchestrator in the vso.xml file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 61

n Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object>
elements in the vso.xml file.

n Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

n File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders
and files. You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must
rename with the .dar extension.

Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

n References to the classes of the plugged-in technology and to the associated plug-in adapter

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator
Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to
functions and object types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can
access the schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Elements of the vso.xml Plug-In
Definition File.

Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology.
You must include a reference to every type of object or operation to expose to Orchestrator in
the vso.xml file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 62

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file
must adhere to a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the
elements nest within each other.

Figure 1-4. Format of the vso.xml Plug-In Definition File

Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object> elements in
the vso.xml file.

The finder operations that you define in the factory implementation find objects in the plugged-in
technology. When the plug-in finds objects, you can use them in Orchestrator workflows and
pass them from one workflow element to another. The unique identifiers that you provide for the
objects allows them to pass between the elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and
stores no information about where or how Orchestrator obtained the object. You must name
objects consistently in the plug-in implementation so that you can track the objects you obtain
from plug-ins.

Developing with VMware vRealize Orchestrator

VMware, Inc. 63

If the Orchestrator server stops while workflows are running, when you restart the server the
workflows resume at the workflow element that was running when the server stopped. The
workflow uses the identifiers to retrieve objects that the element was processing when the
server stopped.

Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

Important Because of the way in which the workflow engine performs data serialization, do not
use the following string sequences in object names. Using these character sequences in object
identifiers causes the workflow engine to parse workflows incorrectly, which can cause
unexpected behavior when you run the workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 1-5. Plug-In Object Naming Rules shows rules that apply to individual object types.

Developing with VMware vRealize Orchestrator

VMware, Inc. 64

Table 1-5. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator
server.

Finder object n Defined in the <finder> elements in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique in the plug-in.

Orchestrator adds the plug-in name and a colon to the finder object names in the finder object
types in the Orchestrator scripting API. For example, the VirtualMachine object type from the
vCenter Server plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique in the Orchestrator server.

n To avoid confusing scripting objects with finder objects of the same name or with scripting
objects from other plug-ins, always prefix the scripting object name with the name of the
plug-in, but do not add a colon. For example, the VirtualMachine class from the vCenter
Server plug-in appears in the Orchestrator scripting API as the VcVirtualMachine class.

File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders and
files. You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with
the .dar extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 65

Table 1-6. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator
objects.

The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the
plugged-in technology. Also contains JAR files that contain
the implementations of the adapter, factory, notification
handlers, and other interfaces in the plug-in.

The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The
resources folder can include the following types of
element:

n Image files, to represent the objects of the plug-in in
the Orchestrator Inventory tab.

n Scripts, to define initialization behavior when the plug-in
starts.

n Orchestrator packages, that can contain custom
workflows, actions, and other resources that interact
with the objects that you access by using the plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or resources
\packages\.

The resources folder is optional.

You use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

Orchestrator Plug-In API Reference

The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when
you develop the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

IAop Interface

The IAop interface provides methods to obtain and set properties on objects in the plugged-in
technology.

public interface IAop

The IAop interface defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 66

Method Returns Description

get(java.lang.String propertyName,

java.lang.Object object,

java.lang.Object sdkObject)

java.lang.Object Obtains a property from a given object
in the plug-in.

set(java.lang.String propertyName,

java.lang.String propertyValue,

java.lang.Object object)

Void Sets a property on a given object in
the plug-in.

IDynamicFinder Interface

The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead
defining the ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String type) java.lang.String Provides an OGNL expression to
obtain an object ID programmatically.

getProperties(java.lang.String type) java.util.List<SDKFinderProperty> Provides a list of object properties
programmatically.

IPluginAdaptor Interface

You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers.
The IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface
defines the following methods.

Method Returns Description

addWatcher(PluginWatcher watcher) Void Adds a watcher to monitor for a
specific event

createPluginFactory(java.lang.String

sessionID, java.lang.String username,

java.lang.String password,

IPluginNotificationHandler

notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the
factory to obtain objects from the
plugged-in technology by their ID, by
their relation to other objects, and so
on.

The session ID allows you to identify a
running session. For example, a user
could log into two different
Orchestrator clients and run two
sessions simultaneously.

Similarly, starting a workflow creates a
session that is independent from the
client in which the workflow started. A
workflow continues to run even if you
close the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 67

Method Returns Description

installLicenses(PluginLicense[]

licenses)

Void Installs the license information for
standard plug-ins that VMware
provides

registerEventPublisher(java.lang.Stri

ng type, java.lang.String id,

IPluginEventPublisher publisher)

Void Sets triggers and gauges on an
element in the inventory

removeWatcher(java.lang.String

watcherId)

Void Removes a watcher

setPluginName(java.lang.String

pluginName)

Void Gets the plug-in name from the vso.xml
file

setPluginPublisher(IPluginPublisher

pluginPublisher)

Void Sets the publisher of the plug-in

uninstallPluginFactory(IPluginFactory

plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.lang.St

ring type, java.lang.String id,

IPluginEventPublisher publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface

The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus
for Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or
you can create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in
technology to the Orchestrator policy engine. You create methods to set policy triggers and
gauges on objects in the plugged-in technology and event listeners to listen for events on those
objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology.
Policy gauges monitor the attributes of objects and push an event in the Orchestrator server if
the values of the objects exceed certain limits. Policy triggers monitor objects and push an event
in the Orchestrator server if a defined event occurs on the object. You register policy gauges and
triggers with IPluginEventPublisher instances so that Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Developing with VMware vRealize Orchestrator

VMware, Inc. 68

Type Returns Description

pushGauge(java.lang.String type,

java.lang.String id, java.lang.String

gaugeName, java.lang.String

deviceName, java.lang.Double

gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:

n type: Type of the object to
monitor.

n id: Identifier of the object to
monitor.

n gaugeName: Name for this gauge.

n deviceName: Name for the type of
attribute that the gauge monitors.

n gaugeValue: Value for which the
gauge monitors the object.

pushTrigger(java.lang.String type,

java.lang.String id, java.lang.String

triggerName, java.util.Properties

additionalProperties)

Void Publish a trigger for policies to
monitor. Takes the following
parameters:

n type: Type of the object to
monitor.

n id: Identifier of the object to
monitor.

n triggerName: Name for this trigger.

n additionalProperties: Any
additional properties for the trigger
to monitor.

IPluginFactory Interface

The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in
the plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.String

cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not
use this method.

find(java.lang.String type,

java.lang.String id)

java.lang.Object Use the plug-in to find an object.
Identify the object by its ID and type.

findAll(java.lang.String type,

java.lang.String query)

QueryResult Use the plug-in to find objects of a
certain type and that match a query
string. You define the syntax of the
query in the IPluginFactory
implementation of the plug-in. If you
do not define query syntax, findAll()
returns all objects of the specified
type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 69

Method Returns Description

findRelation(java.lang.String

parentType, java.lang.String

parentId, java.lang.String

relationName)

java.util.List Determines whether an object has
children.

hasChildrenInRelation(java.lang.Strin

g parentType, java.lang.String

parentId, java.lang.String

relationName)

HasChildrenResult Finds all children related to a given
parent by a certain relation.

invalidate(java.lang.String type,

java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface

The IPluginNotificationHandler defines methods to notify Orchestrator of different types of
event that occur on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.String

type, java.lang.String id)

Void Notifies the system that an object with
the given type and ID has been
deleted

notifyElementInvalidate(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use
the notifyElementInvalidate() method
to notify Orchestrator of all changes in
relations between objects, not only for
relation changes that invalidate an
object. For example, adding a child
object to a parent represents a change
in the relation between the two
objects.

notifyElementUpdated(java.lang.String

type, java.lang.String id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.api.Er

rorLevel severity, java.lang.String

type, java.lang.String id,

java.lang.String message)

Void Publishes an error message related to
the current module

IPluginPublisher Interface

The IPluginPublisher interface publishes a watcher event on an event notification bus for long-
running workflow Wait Event elements to monitor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 70

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that
watches that trigger and that is registered with an IPluginPublisher instance notifies any waiting
workflows that the event has occurred.

The IPluginPublisher Interface defines the following method.

Type Value Description

pushWatcherEvent(java.lang.String id,

java.util.Properties properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface

The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods to
locate and install a Web application in the configuration tab for a plug-in.

Note The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web
application to the configuration, implement IConfigurationAdaptor and use the configuration-war
attribute in the vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the
WAR file from the /webapps directory in
the DAR file as a string.

setWebConfiguration(boolean

webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a
Web application.

PluginTrigger Class

The PluginTrigger class creates a trigger module that obtains information about objects and
events to monitor in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to
monitor, the nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event
elements in workflows. You define policy triggers for Orchestrator policies in classes that define
events and implement the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 71

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger
module.

getProperties() java.util.Properties Obtains a list of properties for the
trigger.

getSdkId() java.lang.String Obtains the ID of the object to monitor
in the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to
monitor in the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String

moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Properties

properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String sdkId) Void Sets the ID of the object to monitor in
the plugged-in technology.

setSdkType(java.lang.String sdkType) Void Sets the type of the object to monitor
in the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the
timeout.

Constructors

n PluginTrigger()

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String sdkType,

java.lang.String sdkId)

PluginWatcher Class

The PluginWatcher class watches a trigger module for a defined event in the plugged-in
technology on behalf of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher
instances. The PluginWatcher class defines methods to obtain or set the name of the workflow
trigger to watch and a timeout period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

Developing with VMware vRealize Orchestrator

VMware, Inc. 72

Method Returns Description

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor

PluginWatcher(PluginTrigger trigger)

QueryResult Class

The QueryResult class contains the results of a find query made on the objects Orchestrator
accesses through the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

The totalCount value can be greater than the number of elements the QueryResult returns, if the
total number of results found exceeds the number of results the query returns. The number of
results the query returns is defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object element) Void Adds an element to the QueryResult

addElements(java.util.List elements) Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

isPartialResult() Boolean Determines whether the result
obtained is complete

removeElement(java.lang.Object

element)

Void Removes an element from the plugged
in technology

setElements(java.util.List elements) Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors

n QueryResult()

n QueryResult(java.util.List ret)

Developing with VMware vRealize Orchestrator

VMware, Inc. 73

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class

The SDKFinderProperty class defines methods to obtain and set properties in the objects found in
the plugged in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties
method returns SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor
tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the
database column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.String

attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.String

beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String

description)

Void Sets an object description

setDisplayName(java.lang.String

displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

setPossibleResultType(java.lang.Strin

g possibleResultType)

Void Sets the possible types of result the
finder returns

setPropertyAccessor(java.lang.String

propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.lang.Obj

ect propertyAccessorTree)

Void Sets an object property accessortree

Developing with VMware vRealize Orchestrator

VMware, Inc. 74

Method Returns Description

setShowInColumn(boolean showInTable) Void Show or hide the object in the
database column

setShowInDescription(boolean

showInDescription)

Void Show or hide the object description

Constructor

SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName,

java.lang.String beanProperty, java.lang.String propertyAccessor)

PluginExecutionException Class

The PluginExecutionException class returns an error message if the plug-in encounters an
exception when it runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace,
getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor

PluginExecutionException(java.lang.String message)

PluginOperationException Class

The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Constructor

PluginOperationException(java.lang.String message)

Developing with VMware vRealize Orchestrator

VMware, Inc. 75

HasChildrenResult Enumeration

The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Method Returns Description

getValue() int Returns one of the following values:

1

Parent has children

-1

Parent has no children

0

Unknown, or invalid parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of
this type with the specified name. The
String must match exactly an identifier
used to declare an enumeration
constant of this type. Do not use
whitespace characters in the
enumeration name.

values() static HasChildrenResult[] Returns an array containing the
constants of this enumeration type, in
the order they are declared. This
method can iterate over constants as
follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Developing with VMware vRealize Orchestrator

VMware, Inc. 76

ScriptingAttribute Annotation Type

The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in
technology for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type

The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

ScriptingParameter Annotation Type

The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Elements of the vso.xml Plug-In Definition File

The vso.xml file contains a set of standard elements. Some of the elements are mandatory while
others are optional. Each element has attributes that define values for the objects and operations
you map to Orchestrator objects and operations.

In addition, elements can have zero or more child elements. A child element further defines the
parent element. The same child element can appear in multiple parent elements. For example, the
description element has no child elements, but appears as a child element for many parent
elements: module, example, trigger, gauge, finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

Developing with VMware vRealize Orchestrator

VMware, Inc. 77

module Element

A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java
classes, versioning, how to deploy the module, and how the plug-in appears in the Orchestrator
inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use
when reloading packages in a new
version of the plug-in. Mandatory
attribute.

build-number Number The plug-in build number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional
attribute.

interface-mapping-allowed true or false VMware strongly discourages interface
mapping. Optional attribute.

Table 1-7. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

description Element

The <description> elements provide descriptions of the elements of the plug-in that appear in the
API Explorer documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

The <description> element is optional. The <description> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 78

Table 1-8. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element

The <deprecated> element marks objects and methods that are deprecated in the API Explorer
documentation.

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 1-9. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element

The <url> element provides a URL that points to external documentation about an object or
enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Table 1-10. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

installation Element

The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Developing with VMware vRealize Orchestrator

VMware, Inc. 79

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the
Orchestrator server starts:

n The action always runs

n The action never runs

n The action runs when the server
detects a newer version of the
plug-in

Mandatory attribute.

Table 1-11. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element

The <action> element specifies the action that runs when the Orchestrator server starts.

The <action> element attributes provide the path to the Orchestrator package or script that
defines the plug-in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements.
The <action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file.
Mandatory attribute.

type install-package or execute-script Either installs the specified
Orchestrator package in the
Orchestrator server, or runs the
specified script. Mandatory attribute.

Table 1-12. Element Hierarchy

Parent Element Child Elements

<installation> None

finder-datasources Element

The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no
attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 80

Table 1-13. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element

The <finder-datasource> element points to the Java class file of the IPluginAdaptor
implementation that you create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-
datasource> element. The <finder-datasource> element identifies the Java class of the plug-in
adapter that you create. The plug-in adapter class instantiates the plug-in factory that you
create. The plug-in factory defines the methods that find objects in the plugged-in technology.
You can set timeouts in the <finder-datasource> element for the finder method calls that the
factory performs. Different timeouts apply to the different finder methods from the
IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Attributes Value Description

name String Identifies the data source in the
<finder> element datasource attributes.
Equivalent to an XML id. Mandatory
attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create
the plug-in adapter, for example,
com.vmware.plugins.sample.Adaptor.
Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must
set concurrent-call to false if the plug-
in does not support concurrent calls.
Optional attribute.

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If
set to direct, calls to finder functions
never time out. If set to timeout, the
Orchestrator server applies the
timeout period that corresponds to the
finder method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-in.
Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from findRelation().
Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll().
Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 81

Attributes Value Description

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-relation Number; default 2 seconds Applies to calls from
findChildrenInRelation(). Optional
attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 1-14. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element

The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the
Orchestrator client Inventory view and object selection dialog boxes.

The <inventory> element does not represent an object in the plugged-in application, but rather
represents the plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 1-15. Element Hierarchy

Parent Element Child Elements

<module> None

finders Element

The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Table 1-16. Element Hierarchy

Parent Element Child Element

<module> <finder>

finder Element

The <finder> element represents in the Orchestrator client a type of object found through the
plug-in.

Developing with VMware vRealize Orchestrator

VMware, Inc. 82

The <finder> element identifies the Java class that defines the object the object finder
represents. The <finder> element defines how the object appears in the Orchestrator client
interface. It also identifies the scripting object that the Orchestrator scripting API defines to
represent this object.

Finders act as an interface between object formats used by different types of plugged-in
technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements.
The <finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the
finder. Mandatory attribute.

datasource <finder-datasource name> attribute Identifies the Java class that defines
the object by using the datasource
refid. Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and
properties of a finder
programmatically, instead defining it in
the vso.xml file. Optional attribute.

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator
client. Optional attribute.

java-class Name of a Java class The Java class that defines the object
the finder finds and maps to a scripting
object. Optional attribute.

script-object <scripting-object type> attribute The <scripting-object> type, if any, to
which to map this finder. Optional
attribute.

Table 1-17. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

Developing with VMware vRealize Orchestrator

VMware, Inc. 83

properties Element

The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 1-18. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element

The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in
factory to obtain properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use
enumerations to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property>
elements. The <property> element has the following attributes.

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory
attribute.

display-name Finder name The displayed property name. Optional
attribute.

bean-property Property name You use the bean-property attribute to
identify a property to obtain using get
and set operations. If you identify a
property named MyProperty, the plug-in
defines getMyProperty and
setMyProperty operations.

You set one or the other of bean-
property or property-accessor, but not
both. Optional attribute.

property-accessor The method that obtains a property
value from an object

The property-accessor attribute allows
you to define an OGNL expression to
validate an object's properties.

You set one or the other of bean-
property or property-accessor, but not
both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table.
Optional attribute.

show-in-description true (default) or false If true, this property shows in the
object description. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 84

Attributes Value Description

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an
enumeration. Optional attribute.

Table 1-19. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element

The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 1-20. Element Hierarchy

Parent Element Child Element

<finder> <relation>

relation Element

The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation>
elements. The <relation> element has the following attributes.

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation.
Mandatory attribute.

cardinality to-one or to-many Defines the relation between the
objects as one-to-one or one-to-many.
Optional attribute.

Table 1-21. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element

The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 85

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate
an object's properties. Mandatory
attribute.

Table 1-22. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element

The <inventory-children> element defines the hierarchy of the lists that show the objects in the
Orchestrator client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no
attributes.

Table 1-23. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

relation-link Element

The <relation-link> element defines the hierarchies between parent and child objects in the
Inventory tab.

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-
link> elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name. Mandatory
attribute.

Table 1-24. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element

The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 86

Table 1-25. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element

The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Table 1-26. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

trigger-properties Element

The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no
attributes.

Table 1-27. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element

The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional
attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the
trigger. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 87

Table 1-28. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element

The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The
<gauge> element has the following attributes.

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional attribute.

max-value Number Maximum threshold. Optional attribute.

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Table 1-29. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element

The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 1-30. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element

The <object> element maps the plugged-in technology's constructors, attributes, and methods to
JavaScript object types that the Orchestrator scripting API exposes.

See Naming Plug-In Objects for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements.
The <object> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 88

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance
of this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Table 1-31. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element

The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 1-32. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element

The <constructor> element defines a constructor method. The <constructor> method produces
documentation in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor>
elements. The <constructor> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 89

Table 1-33. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element

The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 1-34. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Constructor parameter Element

The <parameter> element defines the constructor's parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 1-35. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element

The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 1-36. Element Hierarchy

Parent Element Child Element

<object> <attribute>

Developing with VMware vRealize Orchestrator

VMware, Inc. 90

attribute Element

The <attribute> element maps the attributes of a Java class from the plugged-in technology to
JavaScript attributes that the Orchestrator JavaScript engine makes available.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute>
elements. The <attribute> element has the following attributes.

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

return-type String The type of object this attribute
returns. Appears in the API Explorer
documentation. Optional attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

read-only true or false If true, you cannot modify this
attribute. Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Table 1-37. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element

The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 1-38. Element Hierarchy

Parent Element Child Element

<object> <method>

Developing with VMware vRealize Orchestrator

VMware, Inc. 91

method Element

The <method> element maps a Java method from the plugged-in technology to a JavaScript
method that the Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements.
The <method> element has the following attributes.

Type Value Description

java-name Java method Name of the Java method signature
with argument types in parentheses,
for example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 1-39. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

example Element

The <example> element allows you to add code examples to Javascript methods that appear in
the API Explorer documentation.

The <example> element is optional. The <example> element has no attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 92

Table 1-40. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

code Element

The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is
optional. The <code> element has no attributes.

Table 1-41. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element

The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 1-42.

Parent Element Child Element

<method> <parameter>

Method parameter Element

The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 1-43. Element Hierarchy

Parent Element Child Element

<parameters> None

singleton Element

The <singleton> element creates a JavaScript scripting object as a singleton instance.

Developing with VMware vRealize Orchestrator

VMware, Inc. 93

A singleton object behaves in the same way as a static Java class. Singleton objects define
generic objects for the plug-in to use, rather than defining specific instances of objects that
Orchestrator accesses in the plugged-in technology. For example, you can use a singleton object
to establish the connection to the plugged-in technology.

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this
JavaScript object. Mandatory attribute.

Table 1-44. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element

The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 1-45. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element

The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that
attribute is limited, you can define the different values as enumeration entries. For example, if a
type of object requires a color attribute, and if the only available colors are red, blue, and green,
you can define three enumeration entries to define these three color values. You define entries
as child elements of the enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration>
elements. The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 94

Table 1-46. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

entries Element

The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 1-47. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element

The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The
<entry> element has the following attributes.

Type Value Description

id Text The identifier that objects use to set
the enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 1-48. Element Hierarchy

Parent Element Child Elements

<entries> None

Best Practices for Orchestrator Plug-In Development

You can improve certain aspects of the Orchestrator plug-ins that you develop by understanding
the structure and content of plug-ins, as well as by understanding how to avoid specific
problems.

n Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building
a plug-in layer by layer or you can start building all layers of the plug-in at the same time.

Developing with VMware vRealize Orchestrator

VMware, Inc. 95

n Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as
well as entire systems, such as vCloud Director, with Orchestrator. Depending on the
technology that you integrate with Orchestrator, plug-ins can be categorized as plug-ins for
services, or general purpose plug-ins, and plug-ins for systems.

n Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins,
implement the required Java classes and JavaScript objects, develop the plug-in workflows
and actions, as well as provide the workflow presentation.

n Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your
Orchestrator plug-ins helps you to improve the quality of the plug-ins.

n Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building a
plug-in layer by layer or you can start building all layers of the plug-in at the same time.

For information about plug-in layers, see Structure of an Orchestrator Plug-In.

Bottom-Up Plug-In Development

A plug-in can be built layer by layer using bottom-up development approach.

Bottom-up development approach builds the plug-in layer by layer starting from the lower level
layers and continuing with the higher level layers. When this approach is mixed with an
interactive and iterative development approach, then part or whole layer is delivered for each
iteration. At the end of the N iterations the plug-in is completely finished.

Developing with VMware vRealize Orchestrator

VMware, Inc. 96

Figure 1-5. Bottom-up plug-in development

High level workflow
Iteration n

Iteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

An advantage of the bottom-up plug-in development approach is that development is focused
on one layer at a time.

Consider the following disadvantages of bottom-up plug-in development approach.

n The progress of the plug-in development is difficult to show until some insertions are
completed.

n It does not fit very well in an Agile development practices.

The bottom-up development process is considered good enough for small plug-ins, with reduced
or non-existent set of wrapping classes, scripting objects, actions, or workflows.

Top-Down Plug-In Development

A plug-in can be built by slicing it into top-down functionality, using top-down development
approach.

When the top-down approach is mixed with an Agile development process, new functionality is
delivered for each iteration. As a result, at the end of the iteration N the plug-in is completely
implemented.

Developing with VMware vRealize Orchestrator

VMware, Inc. 97

Figure 1-6. Top-down plug-in development

High level workflow

Iteration nIteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

The top-down plug-in development approach has the following advantages.

n The progress of the plug-in development is easy to show from the first iteration because new
functionality is completed for each iteration and the plug-in can be released and used after
every iteration.

n Completing a vertical slice of functionality allows for very clearly defined success criteria and
definition of what has been done, as well as better communication between developers,
product management, and quality assurance (QA) engineers.

n Allows the QA engineers to start testing and automating from the beginning of the
development process. Such an approach results in valuable feedback and decreases the
overall project delivery time frame.

A disadvantage of the top-down plug-in development approach is that the development is in
progress on different layers at the same time.

You should apply the top-down plug-in development process for most plug-ins. It is appropriate
for plug-ins with dynamic requirements.

Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well
as entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that
you integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general
purpose plug-ins, and plug-ins for systems.

Plug-Ins for Services

Plug-ins for services or general-purpose plug-ins provide functionality that can be considered as
a service inside Orchestrator.

Developing with VMware vRealize Orchestrator

VMware, Inc. 98

Figure 1-7. Architecture of plug-ins for services

Orchestrator Plug-In
core

Adaptor Generic
library

System

Service Plug-In

Plug-ins for services expose generic libraries or utilities to Orchestrator, such as XML, SSH, or
SOAP. For example, the following plug-ins that are available in Orchestrator are plug-ins for
services.

JDBC plug-in

Lets you use any database within a workflow.

Mail plug-in

Lets you send emails within a workflow.

SSH plug-in

Lets you open SSH connections and run commands within a workflow.

XML plug-in

Lets you manage XML documents within a workflow.

Plug-ins for services have the following characteristics.

Complexity

Plug-ins for services have low to medium levels of complexity. Plug-ins for services expose a
specific library, or part of a library, inside Orchestrator so as to provide concrete functionality.
For example, the XML plug-in adds an implementation of a Document Object Model (DOM)
XML parser to the Orchestrator JavaScript API.

Size

Plug-ins for services are relatively small in size. They require the same basic set of classes as
for all plug-ins, and other classes that offer new scripting objects to add new functionality.

Inventory

Plug-ins for services require a small inventory of objects to work, or they do not require an
inventory at all. Plug-ins for services have a generic and small object model, and so, they do
not need to show this model inside the Orchestrator inventory.

Developing with VMware vRealize Orchestrator

VMware, Inc. 99

Plug-Ins for Systems

Plug-ins for systems connect the Orchestrator workflow engine to an external system so that you
can orchestrate the external system.

Following are examples for plug-ins for systems.

vCenter Server plug-in

Lets you manage vCenter Server instances using workflows.

vCloud Director plug-in

Lets you interact with a vCloud Director installation within a workflow.

Cisco UCSM plug-in

Lets you interact with Cisco entities within a workflow.

Following are the main characteristics of plug-ins for systems.

Complexity

Plug-ins for systems have a higher level of complexity than general-purpose plug-ins,
because the technologies that they expose are relatively complex. Plug-ins for systems must
represent all the elements of the external system inside Orchestrator to interact with the
external system and offer its functionality in Orchestrator. If the external system provides an
integration mechanism, you can use it to expose the functionality of the system in
Orchestrator more easily. However, besides representing the elements of the external system
in Orchestrator, plug-ins for systems might also need to offer high scalability, provide a
caching mechanism, deal with events and notifications, and so on.

Size

Plug-ins for system are medium to big in size. Plug-ins for systems require many classes apart
from the basic set of classes because usually they offer a large number of scripting objects.
Plug-ins for systems might require some other helper and auxiliary classes that will interact
with them.

Inventory

Usually, plug-ins for systems have a large number of objects, and you must expose these
objects properly in the inventory so that you can locate them and work with them easily in
Orchestrator. Because of the large number of objects that plug-ins for systems need to
expose, you should build auxiliary tool or a process to auto-generate as much code as
possible for the plug-in. For example, the vCenter Server plug-in provides such a tool.

Plug-Ins for Object-Oriented Systems

Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

Developing with VMware vRealize Orchestrator

VMware, Inc. 100

The most widely used model for an object-oriented system is the Web service model that uses
SOAP. The objects inside this model have a set of attributes that are related to the state of the
objects and offer a set of remote methods that are invoked on the target system side.

Figure 1-8. Plug-Ins for Object-Oriented Systems

Orchestrator Plug-In
core

Adaptor System

Object-oriented system Plug-In

Specific
library

e.g.
WSDL

Generation

You can consider the following when you implement plug-ins for object-oriented systems.

n If you use SOAP, you can use the WSDL file to generate a set of classes that combine the
object model and the communication mechanism.

n This object model is almost everything that you have to expose inside Orchestrator.

Plug-Ins for Resource-Oriented Systems

Resource-oriented systems provide an interaction mechanism that is based on resources and
simple operations that use HTTP methods.

The most representative model for a resource-oriented system is the REST model, combined for
example with XML. The objects inside this model have a set of attributes that are related to their
state. To invoke methods on the target system (communication mechanism), you must use the
standard HTTP methods such as GET, POST, PUT, and so on, and follow some conventions.

Figure 1-9. Plug-ins for resource-oriented systems

System

Resource-oriented system Plug-In

Comm.
library

Model
library

e.g.
XSD

Generation

Orchestrator Plug-In
core

Adaptor

Developing with VMware vRealize Orchestrator

VMware, Inc. 101

You can consider the following when you develop plug-ins for resource-oriented systems.

n If you use REST or only HTTP with XML, you get one or more XML schema files to be able to
read and write messages. From these schemas, you can generate a set of classes that define
the object model. This set of classes only defines the state of the objects because the
operations are defined implicitly with the HTTP methods, for example, as defined in the
vCloud Director plug-in, or explicitly with some specific XML messages, such as the Cisco
UCSM plug-in.

n You need to implement the communication mechanism in another set of classes. This set of
classes defines a new object model that interacts with the original object model. The object
model for the communication mechanism consists of objects and methods only.

n You can expose both the original object model and the object model for the communication
mechanism inside Orchestrator. This might add some complexity depending on how both
object models are exposed, and on whether you are merging related objects from both sides
(to simulate an object-oriented system) or keeping them separate.

Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins,
implement the required Java classes and JavaScript objects, develop the plug-in workflows and
actions, as well as provide the workflow presentation.

n Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

n Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache
objects, bring objects in background, clone objects, and so on. By following such
approaches, you can improve the performance of your plug-ins, avoid concurrency
problems, and improve the responsiveness of the Orchestrator client.

n Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-
in performs.

n Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

n Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and
rules.

Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

You can use a standard Maven structure with modules for your plug-in projects to bring clarity in
where every piece of functionality resides.

Developing with VMware vRealize Orchestrator

VMware, Inc. 102

Table 1-49. Structure of a Plug-In Project

Module Description

/myAwesomePlugin-plugin The root of the plug-in project.

/o11nplugin-myAwesomePlugin The module that composes the final plug-in DAR file.

/o11nplugin-myAwesomePlugin-config The module that contains the plug-in configuration Web
application. It generates a standard WAR file.

/o11nplugin-myAwesomePlugin-core The module that contains all the classes that implement
any of the standard Orchestrator plug-in interfaces and
other auxiliary classes that they use. It generates a
standard JAR file.

/o11nplugin-myAwesomePlugin-model The module that contains all the classes that help you
integrate the third-party technology with Orchestrator
through the plug-in. The classes should not contain any
direct reference to the standard Orchestrator plug-in APIs.

/o11nplugin-myAwesomePlugin-package The module that imports an external Orchestrator package
file with actions and workflows to include it inside the final
plug-in DAR file. The module is optional.

Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache objects,
bring objects in background, clone objects, and so on. By following such approaches, you can
improve the performance of your plug-ins, avoid concurrency problems, and improve the
responsiveness of the Orchestrator client.

Cache Objects

Your plug-in can interact with a remote service, and this interaction is provided by local objects
that represent remote objects on the service side. To achieve good performance of the plug-in
as well as good responsiveness of the Orchestrator UI, you can cache the local objects instead of
getting them every time from the remote service. You can consider the scope of the cache, for
example, one cache for all the plug-in clients, one cache per user of the plug-in, and one cache
per user of the third-party service. When implemented, your caching mechanism is integrated
with the plug-in interface for finding and invalidating objects.

Bring Objects in Background

If you have to show large lists of objects in the plug-in inventory and do not have a fast way to
retrieve those objects, you can bring objects in background. You can bring object in background,
for example, by having objects with two states, fake and loaded. Assume that the fake objects are
very easy to create and provide the minimal information that you have to show in the inventory,
such as name and ID. Then it would be possible to always return fake objects, and when all the
information (the real object) is really needed, the using entity or the plug-in can invoke a method
load automatically to get the real object. You can even configure the process of loading objects
to start automatically after the fake objects are returned, to anticipate the actions of the using
entity.

Developing with VMware vRealize Orchestrator

VMware, Inc. 103

Clone Objects to Avoid Concurrency Problems

If you use a cache for your plug-in, you have to clone objects. Use of a cache that always returns
the same instance of an object to every entity that requests it can have unwanted effects. For
example, entity A requests object O, and the entity views the object in the inventory with all its
attributes. At the same time, entity B requests object O as well, and entity A runs a workflow that
starts changing the attributes of object O. At the end of its run, the workflow invokes the object's
update method to update the object on the server side. If entity A and entity B get the same
instance of object O, entity A views in the inventory all the changes that entity B performs, even
before the changes are committed on the server side. If the run goes fine, it should not be a
problem, but if the run fails, the attributes of object O for entity A are not reverted. In such a
case, if the cache (the find operations of the plug-in) returns a clone of the object instead of the
same instance all the time, each using entity views and modifies its own copy, avoiding
concurrency issues, at least within Orchestrator.

Notify Changes to Others

Problems might occur when you use a cache and clone objects simultaneously. The biggest one
is that the object that is using entity views might not be the latest version that is available for the
object. For example, if an entity displays the inventory, the objects are loaded once, but at the
same time, if another entity is changing some of the objects, the first entity does not view the
changes. To avoid this problem, you can use the PluginWatcher and IPluginPublisher methods
from the Orchestrator plug-in API to notify that something has changed to allow other instances
of Orchestrator clients to see the changes. This also applies to a unique instance of the
Orchestrator client when changes from one object from the inventory affect other objects of the
inventory, and they need to be notified too. The operations that are prone to use notifications
are adding, updating, and deleting objects when these objects, or some properties of these
objects, are shown in the inventory.

Enable Finding Any Object at Any Time

You must implement the find method of the IPluginFactory interface to find objects just by type
and ID. The find method can be invoked directly after restarting Orchestrator and resuming a
workflow.

Simulate a Query Service if You Do Not Have One

The Orchestrator client can require querying for some objects in specific cases or showing them
not as a tree but as a list or a table, for example. This means that your plug-in must be able to
query for some set of objects at any moment. If the third-party technology offers a query
service, you need to adapt and use this service. Otherwise, you should be able to simulate a
query service, despite of the higher complexity or the lower performance of the solution.

Developing with VMware vRealize Orchestrator

VMware, Inc. 104

Find Methods Should Not Return Runtime Exceptions

The methods from the IPluginFactory interface that implement the searches inside the plug-in
should not throw controlled or uncontrolled runtime exceptions. This might be the cause of
strange validation error failures when a workflow is running. For example, between two nodes of
a workflow, the find method is invoked if an output from the first node is an input of the second
node. At that moment, if the object is not found because of any runtime exception, you might get
no more information than a validation error in the Orchestrator client. After that, it depends on
how the plug-in logs the exceptions in to get more or less information inside the log files.

Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-in
performs.

You can implement a workflow for monitoring long-time running operations such as task
monitoring. This workflow can be based on Orchestrator triggers and waiting events. You must
consider that a workflow that is blocked waiting for a task can be resumed as soon as the
Orchestrator server starts. The plug-in must be able to get all the required information to resume
the monitoring process properly.

The monitoring workflow or the task that it can use internally should provide a mechanism to
specify the polling rate and a possible timeout.

The process of debugging a piece of scripting code inside a workflow is not easy, especially if
the code does not invoke any Java code. Because of this, sometimes the only option is to use
the logging methods offered by the default Orchestrator scripting objects.

Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

Start Developing Workflows as Building Blocks

A building block can be a simple workflow that requires a few input parameters and returns a
simple output. If you have a rich set of building blocks, you can create higher-level workflows
easily, and you can offer a better set of tools for composing complex workflows.

Create Higher-Level Workflows Based on Smaller Components

If you have to develop a complex workflow with several inputs and internal steps, you can split it
into smaller and simpler building block workflows and actions.

Create Actions Whenever Possible

You can create actions to achieve additional flexibility when you develop workflows.

n To create complex objects or parameters for scripting methods easily

n To avoid repeating common pieces of code all the time

n To perform UI validations

Developing with VMware vRealize Orchestrator

VMware, Inc. 105

Workflows Should Invoke Actions Whenever Possible

Actions can be invoked directly as nodes inside the workflow schema. This can keep the
workflow schema simpler, because you do not need to add scripting code blocks to invoke a
single action.

Fill In the Expected Information

Provide information for every element of a workflow or an action.

n Provide a description of the workflow or action.

n Provide a description of the input parameters.

n Provide a description of the outputs.

n Provide a description of the attributes for the workflows.

Keep the Version Information Updated

When you version plug-ins, add meaningful comments with information such as major updates to
the plug-in, important implementation details, and so on.

Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and rules.

Use the following properties for the workflow inputs in the workflow presentation.

Table 1-50. Properties for Workflow Inputs

Properties Usage

Show in Inventory Use this property to help the user to run a workflow from
the inventory view.

Specify a root object to be shown in the chooser Use this property to help the user to select inputs. If the
root object can be refreshed in the presentation, is an
attribute, or is retrieved by an object method, you need to
create or set an appropriate action to refresh the object in
the presentation.

Maximum string length Use this property for long strings such as names,
descriptions, file paths, and so on.

Minimum string length Use this property to avoid empty strings from the testing
tools.

Custom validation Implement non-simple validations with actions.

Organize the inputs with steps and display group. Such organization helps the user identify and
distinguish all the input parameters of a workflow.

Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your
Orchestrator plug-ins helps you to improve the quality of the plug-ins.

Developing with VMware vRealize Orchestrator

VMware, Inc. 106

Table 1-51. Useful Practices in Plug-In Implementation

Component Item Description

General Access to third-party API Plug-ins should provide simplified methods for accessing the
third-party API wherever possible.

Interface Plug-ins should provide a coherent and standard interface for
users, even when the API does not.

Action Scripting objects You should create actions for every creation, modification,
deletion, and all other methods available for a scripting object.

Description The description of an action should describe what the action
does instead of how it works.

Scripting When you use scripting to get the properties or methods of
an object, you can check whether the object value is different
from null or undefined.

Deprecation If an action is deprecated, the comment or the throw statement
should indicate the replacement action, or the action should
call a new replacement action so that solutions that are built
on the deprecated version of the action do not fail.

Workflow User interface operations in
the orchestrated technology

You should create a workflow for every operation that is
available in the user interface of the orchestrated technology.

Description The description of a workflow should describe what the
workflow does instead of how it works.

Presentation property
mandatory input

You must set the mandatory input property for all mandatory
workflow inputs.

Presentation property default
value

If you develop a workflow that configures an entity, the
workflow presentation should load the default configuration
values for this entity. For example, if you develop a workflow
that is named Host Configuration, the presentation of the
workflow must load the default values of the host
configuration.

Presentation property Show in
inventory

You must set the Show in inventory property so that you have
contextual workflows on inventory objects.

Presentation property specify
a root parameter

You should use this property in workflows when it is not
necessary to browse the inventory from the tree root .

Workflow validation You must validate workflows and fix all errors.

Object creation All workflows that create a new object should return the new
object as an output parameter.

Deprecation If a workflow is deprecated, the comment or the throw
statement should indicate the replacement workflow, or the
deprecated workflow should call a new replacement workflow
to ensure that solutions that are built on previous versions of
the workflow do not fail.

Developing with VMware vRealize Orchestrator

VMware, Inc. 107

Table 1-51. Useful Practices in Plug-In Implementation (continued)

Component Item Description

Inventory Host disconnection If your inventory contains a connection to a host and this host
becomes unavailable, you should indicate that the host is
disconnected. You can do this either by renaming the root
object by appending - disconnected or by removing the tree
of objects underneath this object, in the same manner as the
vCloud Director plug-in does.

Select value as list property An inventory object must be selectable as treeview or a list.

Host manager If the plug-in implements a host object for the target system,
then a parent hostmanager root object should exist with
properties for adding, removing, or editing host properties.

Getting or updating objects If a query service is running on the orchestrated technology,
you should use it for getting multiple objects.

Child discovery If you need to retrieve child objects separately, the retrieval
process must be multithreaded and non-blocking on a single
error.

Orchestrator object change All workflows that can change the state of an element in the
inventory must update the inventory to avoid having objects
out of synchronization.

External object change You can use a notification mechanism to notify about changes
in the orchestrated technology that occur as a result of
operations that are performed outside of Orchestrator. In case
such operations lead to removal of objects from the
orchestrated technology, you must refresh the inventory
accordingly to avoid failures or loss of data. For example, if a
virtual machine is deleted from vCenter Server, the vCenter
Server plug-in updates the inventory to remove the object of
the removed virtual machine.

Finder object Finder objects should have properties that can be used to
differentiate objects. These are typically the properties that
are present in the user interface.

Scripting object Implementation The equals method must be implemented to insure that ==
operation works on the same object as in some cases the
object might have two instances.

Plug-in object properties Objects that have parent objects should implement a parent
property.

Plug-in object properties Objects that have child objects should implement GET methods
that return arrays of child objects.

Inventory objects Inventory objects should be searchable with Server.find.

All inventory objects should be serializable so they can be
used as input or output attributes in a workflow.

Constructor and methods In most cases, scriptable objects should have either a
constructor, or should be returned by other object attributes
or methods.

Developing with VMware vRealize Orchestrator

VMware, Inc. 108

Table 1-51. Useful Practices in Plug-In Implementation (continued)

Component Item Description

Object ID Objects that have an ID that is issued from an external system
should use an internal ID to ensure that no ID duplication
occurs when you are orchestrating more than one server.

Searching for objects search or find methods should implement a filter so that the
specified name or ID can be found instead of just all objects.
For example, the Orchestrator server has a Server.FindForId
method that allows finding a plug-in object by its ID. To do
this, the method must be implemented for each findable
object in the plug-in.

Trigger If possible, triggers should be available for objects that
change so that Orchestrator can have policies triggered on
various events. For example, to determine when a new virtual
machine is added, powered on, powered off, and so on,
Orchestrator can monitor a trigger or an event in the vCenter
plug-in on the Datacenter object.

Object properties Objects that reside in other plug-ins should have properties
for being easily converted from one plug-in object to another.
For example, virtual machine objects need to have a moref
(managed object reference ID).

Session manager If you are connecting to a remote server that can have a
different session, the plug-in should implement a shared
session and a session per user.

Trigger Trigger All long operations and blocking methods should be able to
start asynchronously with a task returned, and generate a
trigger event on completion.

Enumerations Enums Enumerations for a given type should have an inventory
object that allows selecting from the different values in the
enumeration.

Logging Logs Methods should implement different log levels.

Versioning Plug-in version The plug-in version should follow standards and be updated
along with the plug-in update.

API documentation Methods Methods that are described in the API documentation should
never throw the exception no xyz method / property on an
object. Instead, methods should return null when no
properties are available and be documented with details when
these properties are not available.

vso.xml All objects, methods, and properties must be documented in
vso.xml.

Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

Developing with VMware vRealize Orchestrator

VMware, Inc. 109

General Recommendations

n Use the official names for VMware products involved in the plug-in. For example, use the
official names for the following products and VMware terminology.

Correct Term Do Not Use

vCenter Server VC or vCenter

vCloud Director vCloud

n End all workflow descriptions with a period. For example, Creates a new Organization. is a
workflow description.

n Use a text editor with a spell checker to write the descriptions and then move them to the
plug-in.

n Ensure that the name of the plug-in exactly matches the approved third-party product name
that it is associated with.

Workflows and Actions

n Write informative descriptions. One or two sentences are enough for most of the actions and
workflows.

n Higher-level workflows might include more extensive descriptions and comments.

n Start descriptions with a verb, for example, Creates…. Do not use self-referential language like
This workflow creates.

n Put a period at the end of descriptions that are complete sentences.

n Describe what a workflow or action does instead of how it is implemented.

n Workflows and actions usually are included in folders and packages. Include a small
description for these folders and packages as well. For example, a workflow folder can have
a description similar to Set of workflows related to vApp Template management.

Parameters of Workflows and Actions

n Start workflow and action descriptions with a descriptive noun phrase, for example, Name of.
Do not use a phrase like It's the name of.

n Do not put a period at the end of parameter and action descriptions. They are not complete
sentences.

n Input parameters of workflows must specify a label with appropriate names in the
presentation view. In many cases, you can combine related inputs in a display group. For
example, instead of having two inputs with the labels Name of the Organization and Full
name of the Organization, you can create a display group with the label Organization and
place the inputs Name and Full name in the Organization group.

n For steps and display groups, add descriptions or comments that appear in the workflow
presentation as well.

Developing with VMware vRealize Orchestrator

VMware, Inc. 110

Plug-In API

n The documentation of the API refers to all of the documentation in the vso.xml file and the
Java source files.

n For the vso.xml file, use the same rules for the descriptions of finder objects and scripting
objects with their methods that you use for workflows and actions. Descriptions of object
attributes and method parameters use the same rules as the workflow and action
parameters.

n Avoid special characters in the vso.xml file and include the descriptions inside a <!
[CDATA[insert your description here!]]> tag.

n Use the standard Javadoc style for the Java source files.

Obtaining Input Parameters from Users When a Workflow
Starts

If a workflow requires input parameters, it opens a dialog box in which users enter the required
input parameter values when it runs. You can organize the content and layout, or presentation, of
this dialog box in Presentation tab in the workflow editor.

The way you organize parameters in the Presentation tab translates into the input parameters
dialog box when the workflow runs.

The Presentation tab also allows you to add descriptions of the input parameters to help users
when they provide input parameters. You can also set properties and constraints on parameters
in the Presentation tab to limit the parameters that users provide. If the parameters the user
provides do not meet the constraints you set in the Presentation tab, the workflow will not run.

n Creating the Input Parameters Dialog Box In the Presentation Tab

You define the layout of the dialog box in which users provide input parameters when they
run a workflow in the Presentation tab of the workflow editor.

n Setting Parameter Properties

Orchestrator allows you to define properties to qualify the input parameter values that users
provide when they run workflows. The parameter properties you define impose limits on the
types and values of the input parameters the users provide.

Creating the Input Parameters Dialog Box In the Presentation Tab

You define the layout of the dialog box in which users provide input parameters when they run a
workflow in the Presentation tab of the workflow editor.

The Presentation tab allows you to group input parameters into categories and to define the
order in which these categories appear in the input parameters dialog box.

Developing with VMware vRealize Orchestrator

VMware, Inc. 111

Presentation Descriptions

You can add an associated description for each parameter or group of parameters, which
appears in the input parameters dialog box. The descriptions provide information to the users to
help them provide the correct input parameters. You can enhance the layout of the description
text by using HTML formatting.

Defining Presentation Input Steps

By default, the input parameters dialog box lists all the required input parameters in a single list.
To help users enter input parameters, you can define nodes, called input steps, in the
presentation tab. Input steps group input parameters of a similar nature. The input parameters
under an input step appear in a distinct section in the input parameters dialog box when the
workflow runs.

Defining Presentation Display Groups

Each input step can have nodes of its own called display groups. The display groups define the
order in which parameter input text boxes appear within their section of the input parameters
dialog box. You can define display groups independently of input steps.

Create the Presentation of the Input Parameters Dialog Box

You create the presentation of the dialog box in which users provide input parameters when they
run a workflow in the Presentation tab in the workflow editor.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

By default, all of the workflow's parameters appear under the main Presentation node in the
order in which you create them.

2 Right-click the Presentation node and select Create new step.

A New Step node appears under the Presentation node.

3 Provide an appropriate name for the step and press Enter.

This name appears as a section header in the input parameters dialog box when the workflow
runs.

4 Click the input step and add a description in the General tab in the bottom half of the
Presentation tab.

This description appears in the input parameters dialog box to provide information to the
users to help them provide the correct input parameters. You can enhance the layout of the
description text by using HTML formatting.

Developing with VMware vRealize Orchestrator

VMware, Inc. 112

5 Right-click the input step you created and select Create display group.

A New Group node appears under the input step node.

6 Provide an appropriate name for the display group and press Enter.

This name appears as a subsection header in the input parameters dialog box when the
workflow runs.

7 Click the display group and add a description in the General tab in the bottom half of the
Presentation tab.

This description appears in the input parameters dialog box. You can enhance the layout of
the description text by using HTML formatting. You can add a parameter value to a group
description by using an OGNL statement, such as ${#param}.

8 Repeat the preceding steps until you have created all the input steps and display groups to
appear in the input parameters dialog box when the workflow runs.

9 Drag parameters from under the Presentation node to the steps and groups of your choice.

Results

You created the layout of the input parameters dialog box through which users provide input
parameter values when the workflow runs.

What to do next

You must set the parameter properties.

Setting Parameter Properties

Orchestrator allows you to define properties to qualify the input parameter values that users
provide when they run workflows. The parameter properties you define impose limits on the
types and values of the input parameters the users provide.

Every parameter can have several properties. You define an input parameter's properties in the
Properties tab for a given parameter in the Presentation tab.

Parameter properties validate the input parameters and modify the way that text boxes appear
in the input parameters dialog box. Some parameter properties can create dependencies
between parameters.

Static and Dynamic Parameter Property Values

A parameter property value can be either static or dynamic. Static property values remain
constant. If you set a property value to static, you set or select the property's value from a list
that the workflow editor generates according to the parameter type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 113

Dynamic property values depend on the value of another parameter or attribute. You define the
functions by which dynamic properties obtain values by using an object graph navigation
language (OGNL) expression. If a dynamic parameter property value depends on the value of
another parameter property value and the other parameter property value changes, the OGNL
expression recalculates and changes the dynamic property value.

Set Parameter Properties

When a workflow starts, it validates input parameter values from users against any parameter
properties that you set.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Verify that the workflow has a defined list of input parameters.

Procedure

1 In the workflow editor, click the Presentation tab.

2 Click a parameter in the Presentation tab.

The parameter's General and Properties tabs appear at the bottom of the Presentation tab.

3 Click the parameter's Properties tab.

4 Right-click in the Properties tab and select Add property.

A dialog box opens, presenting a list of the possible properties for a parameter of the type
selected.

5 Select a property from the list presented in the dialog box and click OK.

The property appears in the Properties tab.

6 Under Value, make the property value either static or dynamic by selecting the
corresponding symbol from the drop-down menu.

Option Description

Static property

Dynamic property

7 If you set the property value to static, you select a property value according to the type of

parameter for which you are setting the properties.

Developing with VMware vRealize Orchestrator

VMware, Inc. 114

8 If you set the property value to dynamic, you define the function to obtain the parameter
property value by using an OGNL expression.

The workflow editor provides help writing the OGNL expression.

a Click the icon to obtain a list of all the attributes and parameters defined by the
workflow that this expression can call upon.

b Click the icon to obtain a list of all the actions in the Orchestrator API that return an
output parameter of the type for which you are defining the properties.

Clicking items in the proposed lists of parameters and actions adds them to the OGNL
expression.

9 Click Save at the bottom of the workflow editor.

Results

You defined the properties of the workflow's input parameters.

What to do next

Validate and debug the workflow.

Workflow Input Parameter Properties

You can constrain the input parameters that users provide when they run workflows by setting
parameter properties.

The possible properties for each type of parameter are listed in the following table.

Parameter Property Parameter Type Description

Maximum string length String Sets a maximum length for the
parameter.

Minimum string length String Sets a minimum length for this
parameter.

Matching regular expression String Validates the input using a regular
expression.

Maximum number value Number Sets a maximum value for the
parameter.

Minimum number value Number Sets a minimum value for the
parameter.

Number format Number Formats the input for the parameter.

Mandatory Input All simple types Makes the parameter mandatory.

Predefined answers All simple types Predefines a list of possible values for
the property as an array of simple
types. You either define the array
manually or the property calls an
action that returns an array of objects
of the appropriate type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 115

Parameter Property Parameter Type Description

Predefined list of elements Any simple or complex types Predefines a list of possible values for
the property as an array of simple or
complex types. Calls an action that
returns an array of objects of the
appropriate type.

Show parameter input Any simple or complex types Shows or hides a parameter text box in
the presentation dialog box,
depending on the value of a preceding
Boolean parameter.

Hide parameter input Any simple or complex types Similar to Show parameter input, but
takes the negative value of a previous
Boolean parameter.

Matching expression Any parameter type obtained from a
plug-in

The input parameter matches a given
expression.

Show in inventory Any parameter type obtained from a
plug-in

If set, you can run the present
workflow on any object of this type by
right-clicking it in the inventory view
and selecting Run workflow.

Specify a root object to be shown in
the chooser. Root object is provided
from a parameter or attribute.

Any parameter type obtained from a
plug-in

Specifies the root object if the selector
for this parameter is a hierarchical list
selector.

Select as Any parameter type obtained from a
plug-in

Use a list or hierarchical list selector to
select the parameter.

Default value Any simple or complex types Default value for this parameter.

Custom validation OGNL scriptable validation If the OGNL expression returns a
string, the validation shows this string
as the text of the error result.

Data binding Any simple or complex types Binds to a property that you have
already defined in another parameter.

Authorized only Any parameter type obtained from a
plug-in

Only authorized users can access this
parameter.

Multi-lines text input Any simple or complex types Allows users to enter multiple lines of
text in the input parameters dialog
box.

Predefined Constant Values for OGNL Expressions

You can use predefined constants when you create OGNL expressions to obtain dynamic
parameter property values.

Orchestrator defines the following constants for use in OGNL expressions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 116

Table 1-52. Predefined OGNL Constant Values

Constant Value Description

${#__current} Current value of the custom validation property or
matching expression property

${#__username} User name of the user who started the workflow

${#__userdisplayname} Display name of the user who started the workflow

${#__serverurl} URL containing the IP address of the server from which the
user starts the workflow. The URL consists of the server IP
address and a lookup port:

{ServerIP}:{lookupPort}

${#__datetime} Current date and time

${#__date} Current date, with time set to 00:00:00

${#__timezone} Current timezone

Requesting User Interactions While a Workflow Runs

A workflow can sometimes require additional input parameters from an outside source while it
runs. These input parameters can come from another application or workflow, or the user can
provide them directly.

For example, if a certain event occurs while a workflow runs, the workflow can request human
interaction to decide what course of action to take. The workflow waits before continuing, either
until the user responds to the request for information, or until the waiting time exceeds a possible
timeout period. If the waiting time exceeds the timeout period, the workflow returns an
exception.

The default attributes for user interactions are security.group and timeout.date. When you set
the security.group attribute to a given LDAP user group, you limit the permission to respond to
the user interaction request to members of that user group.

When you set the timeout.date attribute, you set a time and date until which the workflow waits
for the information from the user. You can set an absolute date, or you can create a scripted
workflow element to calculate a time relative to the current time.

Procedure

1 (Optional) Add a User Interaction to a Workflow

You request input parameters from users during a workflow run by adding a User
interaction schema element to the workflow. When a workflow encounters a User
interaction element, it suspends its run and waits for the user to provide the data that it
requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 117

2 (Optional) Set the User Interaction security.group Attribute

The security.group attribute of a user interaction element sets which users or groups of
users have permission to respond to the user interaction.

3 (Optional) Set the timeout.date Attribute to an Absolute Date

You set the timeout.date attribute for a user interaction to set how long the workflow waits
for a user to respond to a user interaction.

4 (Optional) Calculate a Relative Timeout for User Interactions

You can calculate in a Date object a relative time and date at which a user interaction times
out.

5 (Optional) Set the timeout.date Attribute to a Relative Date

You can set the timeout.date attribute of a User Interaction element to a relative time and
date by binding it to a Date object. You define the object in a scripted function.

6 (Optional) Define the External Inputs for a User Interaction

You specify the information that users must provide during a workflow run as the input
parameters of a user interaction.

7 (Optional) Define User Interaction Exception Behavior

If a user does not provide the input parameters within the timeout period, the user
interaction returns an exception. You can define the exception behavior in a scripted
function.

8 (Optional) Create the Input Parameters Dialog Box for the User Interaction

Users provide input parameters during a workflow run in an input parameters dialog box, in
the same way that they provide input parameters when a workflow first starts.

9 (Optional) Respond to a Request for a User Interaction

Workflows that require interactions from users during their run suspend their run either until
the user provides the required information or until the workflow times out.

Add a User Interaction to a Workflow

You request input parameters from users during a workflow run by adding a User interaction
schema element to the workflow. When a workflow encounters a User interaction element, it
suspends its run and waits for the user to provide the data that it requires.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a User interaction element to the appropriate position in the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 118

2 Click the Edit icon () of the User interaction element.

3 Provide a name and a description for the user interaction in the Info tab and click Close.

4 Click Save.

Results

You added a user interaction element to a workflow. When the workflow reaches this element, it
waits for information from the user before continuing its run.

What to do next

Set the security.group attribute of the user interaction to limit permission to respond to the user
interaction to a user or user group. See Set the User Interaction security.group Attribute.

Set the User Interaction security.group Attribute

The security.group attribute of a user interaction element sets which users or groups of users
have permission to respond to the user interaction.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements and a user interaction to the workflow schema.

n Identify an LDAP user group to respond to the user interaction request.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the security.group source parameter to set which users can respond to the
user interaction.

4 (Optional) Select NULL to allow all users to respond to the request for user interaction.

5 To limit the permission to respond to a specific user or user group, click Create parameter/
attribute in workflow.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create the LdapGroup attribute in
the workflow.

8 Click Not set for the parameter value to open the LdapGroup selection box.

9 Type the name of the LDAP user group in the Filter text box.

Developing with VMware vRealize Orchestrator

VMware, Inc. 119

10 Select the LDAP user group from the list and click Select.

For example, selecting the Administrators group means that only members of that group can
respond to this request for user interaction.

You limited the permission to respond to the user interaction request.

11 Click OK to close the Parameter information dialog box.

Results

You set the security.group attribute for the user interaction.

What to do next

Set the timer.date attribute to set the timeout period for the user interaction.

n To set the timeout to an absolute date and time, see Set the timeout.date Attribute to an
Absolute Date.

n To create a function to calculate a timeout that is relative to the current date and time, see
Calculate a Relative Timeout for User Interactions.

Set the timeout.date Attribute to an Absolute Date

You set the timeout.date attribute for a user interaction to set how long the workflow waits for a
user to respond to a user interaction.

You set an absolute time and date in the Date object. When the time on the given date arrives,
the workflow that is waiting for a user interaction times out and ends in the Failed state. For
example, you can set the user interaction to timeout at midday on February 12th. To calculate a
timeout that is relative to the current time and date, see Calculate a Relative Timeout for User
Interactions.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 (Optional) Select NULL to allow the user interaction to set the workflow to wait indefinitely
for the user to respond to the user interaction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 120

5 Click Create parameter/attribute in workflow to set the workflow to fail after a timeout
period.

The Parameter information dialog box opens.

6 Name the parameter.

7 Select Create workflow ATTRIBUTE with the same name to create a Date attribute in the
workflow.

8 Click Not set for the parameter Value.

9 Use the calendar to select an absolute date and time until which the workflow waits for the
user to respond.

10 Click OK to close the calendar.

11 Click OK to close the Parameter information dialog box.

Results

You set the timeout.date attribute to an absolute date. The workflow times out if the user does
not respond to the user interaction before this time and date.

What to do next

Define the external input parameters that the user interaction requires from the user. See Define
the External Inputs for a User Interaction.

Calculate a Relative Timeout for User Interactions

You can calculate in a Date object a relative time and date at which a user interaction times out.

You can set an absolute time and date in a Date object. When the time on the given date arrives,
the request for a user interaction times out. Alternatively, you can create a workflow element
that calculates and generates a relative Date object according to a function that you define. For
example, you can create a relative Date object that adds 24 hours to the current time.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before
the element that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 121

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this
value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

7 Define a function to calculate and generate a Date object named timerDate in the scripting
pad in the Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function,
in which the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current
date and time by using the getTime method and adds 86,400,000 milliseconds, or 24 hours.
The Scriptable Task element generates this value as its output parameter.

8 Click Close.

9 Click Save.

Results

You created a function that calculates a time and date relative to the current time and date and
generates a Date object. A User Interaction element can receive this Date object as an input
parameter to set the timeout period until which it waits for input from the user. When the
workflow arrives at the User Interaction element, it suspends its run and waits either until the
user provides the required information, or for 24 hours before it times out.

What to do next

You must bind the Date object to the User Interaction element's timeout.date parameter. See
Set the timeout.date Attribute to a Relative Date.

Set the timeout.date Attribute to a Relative Date

You can set the timeout.date attribute of a User Interaction element to a relative time and date
by binding it to a Date object. You define the object in a scripted function.

Developing with VMware vRealize Orchestrator

VMware, Inc. 122

If you create a relative Date object in a scripted function, you can bind the timeout.date attribute
of a user interaction to this Date object. For example, if you bind the timeout.date attribute to a
Date object that adds 24 hours to the current time, the user interaction times out after waiting for
24 hours.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Create a scripted function that calculates a relative time and date and encapsulates it in a
Date object in the workflow. See Calculate a Relative Timeout for User Interactions.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Attributes tab for the user interaction.

3 Click Not set for the timeout.date source parameter to set the timeout parameter value.

4 Select the Date object that encapsulates a relative time and date that you defined in a
scripted function and click Select.

Results

You set the timeout.date attribute to a relative date and time that a scripted function calculates.

What to do next

Define the external input parameters that the user interaction requires from the user. See Define
the External Inputs for a User Interaction.

Define the External Inputs for a User Interaction

You specify the information that users must provide during a workflow run as the input
parameters of a user interaction.

When a workflow reaches a user interaction element, it waits until a user provides the
information that the user interaction requires as its input parameters.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group attribute for the user interaction.

n Set the timer.date attribute for the user interaction

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the External inputs tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 123

3 Click the Bind to workflow parameter/attribute icon () to define the parameters that the
user must provide in the user interaction.

4 (Optional) If you already defined the input parameters in the workflow, select the parameters
from the proposed list.

5 Click Create parameter/attribute in workflow to create a workflow attribute to bind to the
input parameter that the user provides.

6 Give the parameter an appropriate name.

7 Select the input parameter type from the list of types by searching for an object type in the
Filter box.

For example, if the user interaction requires the user to provide a virtual machine as an input
parameter, select VC:VirtualMachine.

8 Select Create workflow ATTRIBUTE with the same name to bind the input parameter that
the user provides to a new attribute in the workflow.

9 Leave the input parameter value set to Not set.

The user provides this value when they respond to the user interaction during the workflow
run.

10 Click OK to close the Parameter information dialog box.

Results

You defined the input parameters that the user provides during a user interaction.

What to do next

Define the exception behavior if the user interaction encounters an error. See Define User
Interaction Exception Behavior.

Define User Interaction Exception Behavior

If a user does not provide the input parameters within the timeout period, the user interaction
returns an exception. You can define the exception behavior in a scripted function.

If you do not define the action for the workflow to take if the user interaction times out, the
workflow ends in the Failed state. Defining the exception behavior is a good workflow
development practice.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 124

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Exception tab.

3 Click Not set for the output exception binding.

4 Click Create parameter/attribute in workflow to create an exception attribute to which to
bind the user interaction.

The Parameter information dialog box opens.

5 Create an errorCode attribute.

An errorCode attribute has the following default properties:

n Name: errorCode

n Type: string

n Create: Create workflow ATTRIBUTE with the same name

n Value: Type an appropriate error message.

6 Click OK to close the Parameter information dialog box.

7 Drag a scriptable task element over the user interaction element in the workflow schema.

A red dashed arrow, which represents the exception link, appears between the two elements.
The scriptable task element binds automatically to the errorCode attribute from the user
interaction.

8 Double-click the scriptable task element and provide an appropriate name.

For example, Log timeout.

9 In the Scripting tab of the scriptable task element, write a JavaScript function to handle the
exception.

For example, to record the timeout in the Orchestrator log, write the following function:

System.log("No response from user. Timed out.");

10 Link and bind the scriptable task element that handles exceptions to the element that follows
it in the workflow.

For example, link and bind the scriptable task element to a Throw exception element to end
the workflow with an error.

Results

You defined the exception behavior if the user interaction times out.

Developing with VMware vRealize Orchestrator

VMware, Inc. 125

What to do next

Create the dialog box in which users provide input parameters. See Create the Input Parameters
Dialog Box for the User Interaction.

Create the Input Parameters Dialog Box for the User Interaction

Users provide input parameters during a workflow run in an input parameters dialog box, in the
same way that they provide input parameters when a workflow first starts.

You create the layout of the dialog box in the Presentation tab of the user interaction element,
not in the Presentation tab for the whole workflow. The Presentation tab of the whole workflow
creates the layout of the input parameters dialog box that appears when you start a workflow.
The Presentation tab of the user interaction element creates the layout of the input parameters
dialog box that opens when a workflow arrives at a user interaction element during its run.

Prerequisites

n Add a user interaction element to the workflow schema.

n Set the security.group and timer.date attributes for the user interaction.

n Define the external input parameters of the user interaction.

n Define the exception behavior.

Procedure

1 Click the Edit icon () of the User Interaction element in the workflow schema.

2 Click the Presentation tab of the user interaction element.

The Presentation tab shows the external input parameters that you created for the user
interaction.

3 (Optional) Right-click the Presentation node in the Presentation tab and select Create new
step.

Steps allow you to create sections in the dialog box, with descriptions and headings under
which you can organize the input parameters.

4 (Optional) Right-click the Presentation node in the Presentation tab and select Create
display group.

Display groups allow you to sort the order in which input parameters appear in the steps, and
allow you to add sub-headers and instructions to the dialog box.

5 Click an input parameter in the list and add a description of the input parameter in the
General tab for that parameter.

The description text that you type appears as a label in the input parameters dialog box to
inform the user of the information they must provide when they respond to the user
interaction.

Developing with VMware vRealize Orchestrator

VMware, Inc. 126

6 Define input parameter properties.

Input parameter properties allow you to qualify the input parameter values that users can
provide, and to determine parameter values dynamically by using OGNL expressions.

7 Click Save and close to close the workflow editor.

Results

You created the input parameters dialog box in which users provide input parameters to respond
to a user interaction during a workflow run.

What to do next

For information about creating the presentation steps and groups and setting input parameter
properties, see Creating the Input Parameters Dialog Box In the Presentation Tab.

Respond to a Request for a User Interaction

Workflows that require interactions from users during their run suspend their run either until the
user provides the required information or until the workflow times out.

Workflows that require user interactions define which users can provide the required information
and direct the requests for interaction.

Prerequisites

Verify that at least one workflow is in the Waiting for User Interaction state.

Procedure

1 From the drop-down menu in the Orchestrator Legacy Client, select Run.

2 Click the My Orchestrator view in the Orchestrator Legacy Client.

3 Click the Waiting for Input tab.

The Waiting for Input tab lists the workflows that are waiting for user inputs.

4 Double-click a workflow that is waiting for input.

The workflow token that is waiting for input appears in the Workflows hierarchical list with

the following symbol: .

5 Right-click the workflow token and select Answer.

6 Follow the instructions in the input parameters dialog box and provide the information that
the workflow requires.

Results

You provided information to a workflow that was waiting for user input during its run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 127

Calling Workflows Within Workflows

Workflows can call on other workflows during their run. A workflow can start another workflow
either because it requires the result of the other workflow as an input parameter for its own run,
or it can start a workflow and let it continue its own run independently. Workflows can also start
a workflow at a given time in the future, or start multiple workflows simultaneously.

n Workflow Elements that Call Workflows

There are four ways to call other workflows from within a workflow. Each way of calling a
workflow or workflows is represented by a different workflow schema element.

n Call a Workflow Synchronously

Calling a workflow synchronously runs the called workflow as a part of the run of the calling
workflow. The calling workflow can use the called workflow's output parameters as input
parameters when it runs its subsequent schema elements.

n Call a Workflow Asynchronously

Calling a workflow asynchronously runs the called workflow independently of the calling
workflow. The calling workflow continues its run without waiting for the called workflow to
complete.

n Schedule a Workflow

You can call a workflow from a workflow and schedule it to start at a later time and date.

n Prerequisites for Calling a Remote Workflow from Within Another Workflow

If the workflow that you develop calls another workflow that resides on a remote
Orchestrator server, certain prerequisites must be fulfilled so that the remote workflow can
run successfully.

n Call Several Workflows Simultaneously

Calling several workflows simultaneously runs the called workflows synchronously as part of
the run of the calling workflow. The calling workflow waits for all of the called workflows to
complete before it continues. The calling workflow can use the results of the called
workflows as input parameters when it runs its subsequent schema elements.

Workflow Elements that Call Workflows

There are four ways to call other workflows from within a workflow. Each way of calling a
workflow or workflows is represented by a different workflow schema element.

Synchronous Workflows

A workflow can start another workflow synchronously. The called workflow runs as an
integral part of the calling workflow's run, and runs in the same memory space as the calling
workflow. The calling workflow starts another workflow, then waits until the end of the called
workflow's run before it starts running the next element in its schema. Usually, you call a
workflow synchronously because the calling workflow requires the output of the called
workflow as an input parameter for a subsequent schema element. For example, a workflow

Developing with VMware vRealize Orchestrator

VMware, Inc. 128

can call the Start virtual machine and wait workflow to start a virtual machine, and then obtain
the IP address of this virtual machine to pass to another element or to a user by email.

Asynchronous Workflows

A workflow can start a workflow asynchronously. The calling workflow starts another
workflow, but the calling workflow immediately continues running the next element in its
schema, without waiting for the result of the called workflow. The called workflows run with
input parameters that the calling workflow defines, but the lifecycle of the called workflow is
independent from the lifecycle of the calling workflow. Asynchronous workflows allow you to
create chains of workflows that pass input parameters from one workflow to the next. For
example, a workflow can create various objects during its run. The workflow can then start
asynchronous workflows that use these objects as input parameters in their own runs. When
the original workflow has started all the required workflows and run its remaining elements, it
ends. However, the asynchronous workflows it started continue their runs independently of
the workflow that started them.

To make the calling workflow wait for the result of the called workflow, either use a nested
workflow or create a scriptable task that retrieves the state of the workflow token of the
called workflow and then retrieves the result of the workflow when it completes.

Scheduled Workflows

A workflow can call a workflow but defer starting that workflow until a later time and date.
The calling workflow then continues its run until it ends. Calling a scheduled workflow creates
a task to start that workflow at the given time and date. When the calling workflow has run,
you can view the scheduled workflow in the Scheduler and My Orchestrator views in the
Orchestrator client.

Scheduled workflows only run once. You can schedule a workflow to run recurrently by
calling the Workflow.scheduleRecurrently method in a scriptable task element in a synchronous
workflow.

Nested Workflows

A workflow can start several workflows simultaneously by nesting several workflows in a
single schema element. All the workflows listed in the nested workflow element start
simultaneously when the calling workflow arrives at the nested workflows element in its
schema. Significantly, each nested workflow starts in a different memory space from the
memory space of the calling workflow. The calling workflow waits until all the nested
workflows have completed their runs before it starts running the next element in its schema.
The calling workflow can thus use the results of the nested workflows as input parameters
when it runs its remaining elements.

Propagate Workflow Changes to other Workflows

If you call a workflow from another workflow, Orchestrator imports the input parameters of the
child workflow in the parent workflow at the moment you add the workflow element to the
schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 129

If you modify the child workflow after you have added it to another workflow, the parent
workflow calls on the new version of the child workflow, but does not import any new input
parameters. To prevent changes to workflows affecting the behavior of other workflows that call
them, Orchestrator does not propagate the new input parameters automatically to the calling
workflows.

To propagate parameters from one workflow to other workflows that call it, you must find the
workflows that call the workflow, and synchronize the workflows manually.

Prerequisites

Verify that you have a workflow that another workflow or workflows call.

Procedure

1 Modify and save a workflow that other workflows call.

2 Close the workflow editor.

3 Navigate to the workflow you changed in the hierarchical list in the Workflows view in the
Orchestrator client.

4 Right-click the workflow, and select References > Find Elements that Use this Element.

A list of workflows that call this workflow appears.

5 Double-click a workflow in the list to highlight it in the Workflows view in the Orchestrator
client.

6 Right-click the workflow, and select Edit.

The workflow editor opens.

7 Click the Schema tab in the workflow editor.

8 Right-click the workflow element for the changed workflow from the workflow schema and
select Synchronize > Synchronize Parameters.

9 Select Continue in the confirmation dialog box.

10 Save and close the workflow editor.

11 Repeat Step 5 to Step 10 for all the workflows that use the modified workflow.

Results

You propagated a changed workflow to other workflows that call it.

Propagate the Input Parameters and Presentation of a Child Workflow to the
Parent Workflow

If you develop a workflow that calls other workflows, you can propagate the input parameters
and the presentation of the child workflows to the parent workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 130

Procedure

1 From the drop-down menu in the Orchestrator client, select Run.

2 Right-click the workflow that you want to modify and select Edit.

The workflow editor opens.

3 Select the Schema tab.

4 Right-click the element of the child workflow whose input parameters and presentation you
want to propagate to the parent workflow and select Synchronize > Synchronize
Presentation.

5 In the confirmation dialog, select OK.

6 (Optional) Repeat Step 4 and Step 5 for all child workflows whose input parameters and
presentation you want to propagate to the parent workflow.

Results

The input parameters of the child workflows are added to the input parameters of the parent
workflow. The presentation of the parent workflow is extended with the presentations of the
child workflows.

Call a Workflow Synchronously

Calling a workflow synchronously runs the called workflow as a part of the run of the calling
workflow. The calling workflow can use the called workflow's output parameters as input
parameters when it runs its subsequent schema elements.

You call workflows synchronously from another workflow by using the Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Workflow element from the Generic menu to the appropriate position in the workflow
schema.

The Choose workflow selection dialog box appears.

2 Search for ands select the workflow you want and click OK.

If the search returns a partial result, narrow your search criterion or increase the number of
search results from the Tools > User preferences menu in the client.

3 Click the Workflow element to show its properties tabs in the bottom half of the Schema tab.

4 Click the Edit icon () of the Workflow element in the workflow schema.

Developing with VMware vRealize Orchestrator

VMware, Inc. 131

5 Bind the required input parameters to the workflow in the IN tab of the workflow schema
element.

6 Bind the required output parameters to the workflow in the OUT tab of the workflow schema
element's.

7 Define the exception behavior of the workflow in the Exceptions tab.

8 Click Close.

9 Click Save at the bottom of the workflow editor.

Results

You called a workflow synchronously from another workflow. When the workflow reaches the
synchronous workflow during its run, the synchronous workflow starts, and the initial workflow
waits for it to complete before continuing its run.

What to do next

You can call a workflow asynchronously from a workflow.

Call a Workflow Asynchronously

Calling a workflow asynchronously runs the called workflow independently of the calling
workflow. The calling workflow continues its run without waiting for the called workflow to
complete.

You call workflows asynchronously from another workflow by using the Asynchronous Workflow
element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag an Asynchronous Workflow element from the Generic menu to the appropriate position
in the workflow schema.

The Choose workflow selection dialog box appears.

2 Search for and select the desired workflow from the list and click OK.

3 Click the Edit icon () of the Asynchronous Workflow element in the workflow schema.

4 Bind the required input parameters to the workflow in IN tab of the asynchronous workflow
element.

5 Bind the required output parameter in the OUT tab of the asynchronous workflow element.

You can bind the output parameter either to the called workflow, or to that workflow's result.

n Bind to the called workflow to return that workflow as an output parameter

Developing with VMware vRealize Orchestrator

VMware, Inc. 132

n Bind to the workflow token of the called workflow to return the result of running the
called workflow.

6 Define the exception behavior of the asynchronous workflow element in the Exceptions tab.

7 Click Close.

8 Click Save at the bottom of the workflow editor.

Results

You called a workflow asynchronously from another workflow. When the workflow reaches the
asynchronous workflow during its run, the asynchronous workflow starts, and the initial workflow
continues its run without waiting for the asynchronous workflow to finish.

What to do next

You can schedule a workflow to start at a later time and date.

Schedule a Workflow

You can call a workflow from a workflow and schedule it to start at a later time and date.

You schedule workflows in another workflow by using the Schedule Workflow element.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Schedule Workflow element from the Generic menu to the appropriate position in the
workflow schema.

2 Search for the workflow to call by typing part of its name in the text box.

3 Select the workflow from the list and click OK.

4 Click the Edit icon () of the Schedule Workflow element in the workflow schema.

5 Click the IN property tab.

A parameter named workflowScheduleDate appears in the list of properties to define, together
with the input parameters of the calling workflow.

6 Click Not set for the workflowScheduleDate parameter to set the parameter.

7 Click Create parameter/attribute in workflow to create the parameter and set the parameter
value.

8 Click Not set for Value to set the parameter value.

9 Use the calendar that appears to set the date and time to start the scheduled workflow and
click OK.

Developing with VMware vRealize Orchestrator

VMware, Inc. 133

10 Bind the remaining input parameters to the scheduled workflow in the IN tab of the
scheduled workflow element.

11 Bind the required output parameters to the Task object in the OUT tab of the scheduled
workflow element.

12 Define the exception behavior of the scheduled workflow element in the Exceptions tab.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

Results

You scheduled a workflow to start at a given time and date from another workflow.

What to do next

You can call multiple workflows simultaneously from a workflow.

Prerequisites for Calling a Remote Workflow from Within Another
Workflow

If the workflow that you develop calls another workflow that resides on a remote Orchestrator
server, certain prerequisites must be fulfilled so that the remote workflow can run successfully.

n All input parameters of the remote workflow must be resolvable on the remote Orchestrator
server.

n All output parameters of the remote workflow must be resolvable on the local Orchestrator
server.

To ensure that the parameters of the remote workflow are resolvable, the inventory objects that
the workflow uses must be available both in the remote and the local Orchestrator servers. In
case the remote workflow uses objects from a plug-in, the same plug-in must be available on
both Orchestrator servers. The inventories of the remote plug-in and the local plug-in must be
identical. In case the remote workflow uses system objects in Orchestrator, like workflows and
actions, the same workflows and actions must exist in the inventories of the remote and the local
Orchestrator servers.

For example, suppose that you insert the Rename virtual machine workflow in a Nested
Workflow element in the Test workflow that you develop. You want to run the Rename virtual
machine workflow in a remote Orchestrator server. When you run the Test workflow, the
Rename virtual machine workflow is called within the run of the Test workflow. You specify a
virtual machine to rename from the inventory of the local Orchestrator server. Because the
Rename virtual machine workflow runs on the remote Orchestrator server, the same virtual
machine must be available in the inventory of that server. Otherwise, the Rename virtual machine
workflow cannot resolve its vm input parameter. Therefore, the vCenter Server plug-in on the
local and the remote Orchestrator servers must be connected to the same vCenter Server
instance.

Developing with VMware vRealize Orchestrator

VMware, Inc. 134

Call Several Workflows Simultaneously

Calling several workflows simultaneously runs the called workflows synchronously as part of the
run of the calling workflow. The calling workflow waits for all of the called workflows to complete
before it continues. The calling workflow can use the results of the called workflows as input
parameters when it runs its subsequent schema elements.

You call several workflows simultaneously from another workflow by using the Nested
Workflows element. You can use nested workflows to run workflows with user credentials that
are different from the credentials of the user of the calling workflow.

Prerequisites

n Open a workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Nested Workflows element from the Action & Workflow menu to the appropriate
position in the workflow schema.

The Choose workflow selection dialog box appears.

2 Search for and select a workflow to start and click OK.

3 Click the Edit icon () of the Nested Workflows element in the workflow schema.

4 Click the Workflows tab.

The workflow you selected in Step 2 appears in the tab.

5 Set the IN and OUT bindings for this workflow in the IN and OUT tabs in the right panel of the
Workflows schema element properties tab.

6 Click the Connection Info tab in the right panel of the Workflows schema element properties
tab.

The Connection Info tab allows you to access workflows stored in a different server to the
local one, using the appropriate credentials.

7 To access workflows on a remote server, select Remote and click Not set to provide a host
name or IP address for the remote server.

Note You can use the vRealize Orchestrator Multi-Node plug-in to call workflows on a
remote server.

8 Define the credentials with which to access the remote server.

n Select Inherit to use the same credentials as the user who runs the calling workflow.

n Select Dynamic and click Not set to select a set of dynamic credentials that a parameter
of the credentials type defines elsewhere in the workflow.

n Select Static and click Not set to enter the credentials directly.

Developing with VMware vRealize Orchestrator

VMware, Inc. 135

9 Click the Add Workflow button in the Workflows tab to select more workflows to add to the
nested workflow element.

10 Repeat Step 2 to Step 8 to define the settings for each of the workflows you add.

11 Click the nested workflow element in the workflow schema.

The number of workflows nested in the element appears as a numeral on the nested
workflows element.

Results

You called several workflows simultaneously from a workflow.

What to do next

You can define long-running workflows.

Running a Workflow on a Selection of Objects

You can automate repetitive tasks by running a workflow on a selection of objects. For example,
you can create a workflow that takes a snapshot of all the virtual machines in a virtual machine
folder, or you can create a workflow that powers off all the virtual machines on a given host.

You can use one of the following methods to run a workflow on a selection of objects.

n Run the Library > vCenter > Batch > Run a workflow on a selection of objects workflow.

n Create a workflow that calls the Library > Orchestrator > Start workflows in a series or Start
workflows in parallel workflows.

n Create a workflow that obtains an array of objects and runs a workflow on each object in the
array in a loop of workflow elements.

n Run a workflow from JavaScript by calling the Workflow.execute() method in a For loop in a
scripted element in a workflow.

Which method you choose to run a workflow on a selection of objects depends on the workflow
to run and can affect the performance of the workflow. For example, running the Run a workflow
on a selection of objects workflow is the simplest way to run a workflow on multiple objects and
requires no workflow development, but it can only run workflows that take a single input
parameter.

Creating a workflow that calls the Start workflows in a series or Start workflows in parallel
workflows allows you to run on multiple objects workflows that take more than one input
parameter. The calling workflow must create a properties array to pass the input parameters to
the Start workflows in a series or Start workflows in parallel workflow. These workflows are only
for use in other workflows. Do not run them directly.

Developing with VMware vRealize Orchestrator

VMware, Inc. 136

Running a workflow in a For loop in a scripted element is faster than running a workflow in a loop
of workflow elements, but it is less flexible and limits the potential for reuse. Most importantly,
running a workflow in a scripted loop loses the checkpointing that Orchestrator performs when it
starts each element in a workflow run. As a consequence, if the Orchestrator server stops while
the scripted loop is running, when the server restarts, the workflow will resume at the beginning
of the scripted element, repeating the whole loop. If the Orchestrator server stops while running
a workflow with a loop of workflow elements, the workflow will resume at the specific element in
the loop that was running when the server stopped.

For more information about the Batch workflows, see Using VMware vRealize Orchestrator Plug-
Ins.

How to create a workflow that runs a workflow on an array of objects in a loop of workflow
elements is demonstrated in Develop a Complex Workflow.

How to run a workflow in a scripted For loop is demonstrated in Workflow Scripting Examples.

Implement the Start Workflows in a Series and Start Workflows in
Parallel Workflows

You can use the Start workflows in a series and Start workflows in parallel workflows to run a
workflow on a selection of objects.

You cannot run the Start workflows in a series and Start workflows in parallel workflows directly.
You must include them in another workflow that you create. To use the Start workflows in a
series and Start workflows in parallel workflows to run a workflow on a selection of objects, you
must obtain the objects on which to run the workflow. You pass these objects and any other
input parameters that the workflow requires to the workflow as an array of properties. The Start
workflows in a series and Start workflows in parallel workflows emit the results of running the
workflow on the selection of objects as an array of WorkflowToken objects.

You implement the Start workflows in a series and Start workflows in parallel workflows in the
same way. The Start workflows in a series workflow runs the workflow on each object
sequentially. The Start workflows in parallel workflow runs the workflow on all the objects
simultaneously.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 In the workflow schema, add a scriptable task element or an action to obtain a list of objects
on which to run the workflow.

For example, to run a workflow on all the virtual machines in a virtual machine folder, you can
add the getAllVirtualMachinesByFolder action to the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 137

2 Link the scripted element or action and bind the input and output of the scripted element or
action to workflow inputs or attributes.

For example, you can bind the vmFolder input of the getAllVirtualMachinesByFolder action to a
workflow input parameter and the actionResult output to a workflow attribute in the calling
workflow.

3 Add a scriptable task element to cast the list of objects into a properties array.

For example, if the objects on which to run the workflow are an array of virtual machines,
allVMs, returned by the actionResult output of the getAllVirtualMachinesByFolder action, you
can write the following script to cast the objects into a properties array.

propsArray = new Array();

for each (var vm in allVMs) {

 var prop = new Properties();

 prop.put("vm", vm);

 propsArray.push(prop);

}

4 Bind the inputs and outputs of the scriptable task element to workflow attributes.

In the example scriptable task element in Step 3, you bind the input to the allVMs array of
virtual machines and you create the propsArray output attribute as an array of Properties
objects.

5 Add a workflow element to the workflow schema.

6 Select either of the Start workflows in a series or Start workflows in parallel workflows and
link the workflow element to the other elements.

7 Bind the wf input of the Start workflows in a series or Start workflows in parallel workflow to
the workflow to run on the objects.

For example, to remove any snapshots of all the virtual machines returned by the
getAllVirtualMachinesByFolder action, select the Remove all snapshots workflow.

8 Bind the parameters input of the Start workflows in a series or Start workflows in parallel
workflow to the array of Properties objects that contains the objects on which to run the
workflow.

For example, bind the parameters input to the propsArray attribute defined in Step 4.

9 (Optional) Bind the workflowTokens output of the Start workflows in a series or Start
workflows in parallel workflow to an attribute in the workflow.

10 (Optional) Continue adding more elements that use the results of running the Start workflows
in a series or Start workflows in parallel workflow.

Results

You created a workflow that uses either of the Start workflows in a series or Start workflows in
parallel workflows to run a workflow on a selection of objects.

Developing with VMware vRealize Orchestrator

VMware, Inc. 138

Developing Long-Running Workflows

A workflow in a waiting state consumes system resources because it constantly polls the object
from which it requires a response. If you know that a workflow will potentially wait for a long time
before it receives the response it requires, you can add long-running workflow elements to the
workflow.

Every running workflow consumes a system thread. When a workflow reaches a long-running
workflow element, the long-running workflow element sets the workflow into a passive state. The
long-running workflow element then passes the workflow information to a single thread that polls
the system for all long-running workflow elements running in the server. Rather than each long-
running workflow element constantly attempting to retrieve information from the system, long-
running workflow elements remain passive for a set duration, while the long-running workflow
thread polls the system on its behalf.

You set the duration of the wait in one of the following ways:

n Set a timer, encapsulated in a Date object, that suspends the workflow until a certain time and
date. You implement long-running workflow elements that are based on a timer by including
a Waiting Timer element in the schema.

n Define a trigger event, encapsulated in a Trigger object, that restarts the workflow after the
trigger event occurs. You implement long-running workflow elements that are based on a
trigger by adding a Waiting Event element or a User Interaction element in the schema.

Set a Relative Time and Date for Timer-Based Workflows

You can set the timer.date attribute of a Waiting Timer element to a relative time and date by
binding it to a Date object. You define the Date object in a scripted function.

When the time on the given date arrives, the long-running workflow that is based on a timer
reactivates and continues its run. For example, you can set the workflow to reactivate at midday
on February 12. Alternatively, you can create a workflow element that calculates and generates a
relative Date object according to a function that you define. For example, you can create a
relative Date object that adds 24 hours to the current time.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Scriptable task element from the Generic menu to the schema of a workflow, before
the element that requires the relative Date object for its timeout.date attribute.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the scripted workflow element in the Info properties tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 139

4 Click the OUT properties tab, and click the Bind to workflow parameter/attribute icon ().

5 Click Create parameter/attribute in workflow to create a workflow attribute.

a Name the attribute timerDate.

b Select Date from the list of attribute types.

c Select Create workflow ATTRIBUTE with the same name.

d Leave the attribute value set to Not set, because a scripted function will provide this
value.

e Click OK.

6 Click the Scripting tab for the scripted workflow element.

7 Define a function to calculate and generate a Date object named timerDate in the scripting
pad in the Scripting tab.

For example, you can create a Date object by implementing the following JavaScript function,
in which the timeout period is a relative delay in milliseconds.

timerDate = new Date();

System.log("Current date : '" + timerDate + "'");

timerDate.setTime(timerDate.getTime() + (86400 * 1000));

System.log("Timer will expire at '" + timerDate + "'");

The preceding example JavaScript function defines a Date object that obtains the current
date and time by using the getTime method and adds 86,400,000 milliseconds, or 24 hours.
The Scriptable Task element generates this value as its output parameter.

8 Click Close.

9 Click Save.

Results

You created a function that calculates and generates a Date object. A Waiting Timer element can
receive this Date object as an input parameter, to suspend a long-running workflow until the date
encapsulated in this object. When the workflow arrives at the Waiting Timer element, it suspends
its run and waits for 24 hours before continuing.

What to do next

You must add a Waiting Timer element to a workflow to implement a long-running workflow that
is based on a timer.

Create a Timer-Based Long-Running Workflow

If you know a workflow will have to wait for a response from an outside source for a predictable
time, you can implement it as a timer-based long-running workflow. A timer-based long-running
workflow waits until a given time and date before resuming.

Developing with VMware vRealize Orchestrator

VMware, Inc. 140

You implement a workflow as a timer-based long-running workflow by using the Waiting Timer
element.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

Procedure

1 Drag a Waiting Timer element from the Generic menu to the position in the workflow schema
at which to suspend the workflow's run.

If you implement a scriptable task to calculate the time and date, this element must precede
the Waiting Timer element.

2 Click the Edit icon () of the Waiting Timer element in the workflow schema.

3 Provide a description of the reason for implementing the timer in the Info properties tab.

4 Click the Attributes properties tab.

The timer.date parameter appears in the list of attributes.

5 Click the timer.date parameter's Not set button to bind the parameter to an appropriate Date
object.

The Waiting Timer selection dialog box opens, presenting a list of possible bindings.

n Select a predefined Date object from the proposed list, for example one defined by a
Scriptable Task element elsewhere in the workflow.

n Alternatively, create a Date object that sets a specific date and time for the workflow to
await.

6 (Optional) Create a Date object that sets a specific date and time that the workflow awaits.

a Click Create parameter/attribute in workflow in the Waiting Timer selection dialog box.

The Parameter information dialog box appears.

b Give the parameter an appropriate name.

c Leave the type set to Date.

d Click Create workflow ATTRIBUTE with the same name.

e Click the Value property's Not set button to set the parameter value.

A calendar appears.

f Use the calendar to set a date and time at which to restart workflow.

g Click OK.

7 Click Close.

Developing with VMware vRealize Orchestrator

VMware, Inc. 141

8 Click Save at the bottom of the workflow editor.

Results

You defined a timer that suspends a timer-based long-running workflow until a set time and date.

What to do next

You can create a long-running workflow that waits for a trigger event before continuing.

Create a Trigger Object

Trigger objects monitor event triggers that plug-ins define. For example, the vCenter Server plug-
in defines these events as Task objects. When the task ends, the trigger sends a message to a
waiting trigger-based long-running workflow element, to restart the workflow.

The time-consuming event for which a trigger-based long-running workflow waits must return a
VC:Task object. For example, the startVM action to start a virtual machine returns a VC:Task object,
so that subsequent elements in a workflow can monitor its progress. A trigger-based long-
running workflow's trigger event requires this VC:Task object as an input parameter.

You create a Trigger object in a JavaScript function in a Scriptable Task element. This Scriptable
Task element can be part of the trigger-based long-running workflow that waits for the trigger
event. Alternatively, it can be part of a different workflow that provides input parameters to the
trigger-based long-running workflow. The trigger function must implement the
createEndOfTaskTrigger() method from the Orchestrator API.

Important You must define a timeout period for all triggers, otherwise the workflow can wait
indefinitely.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n In the workflow, declare a VC:Task object as an attribute or input parameter, such as a VC:Task
object from a workflow or workflow element that starts or clones a virtual machine.

Procedure

1 Drag a Scriptable Task element from the Generic menu into the schema of a workflow.

One of the elements that precedes the Scriptable Task must generate a VC:Task object as its
output parameter.

2 Click the Edit icon () of the Scriptable task element in the workflow schema.

3 Provide a name and description for the trigger in Info properties tab.

4 Click the IN properties tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 142

5 Click the Bind to workflow parameter/attribute icon ().

The input parameter selection dialog box opens.

6 Select or create an input parameter of the type VC:Task.

This VC:Task object represents the time-consuming event that another workflow or element
launches.

7 (Optional) Select or create an input parameter of the Number type to define a timeout period
in seconds.

8 Click the OUT properties tab.

9 Click the Bind to workflow parameter/attribute icon ().

The output parameter selection dialog box opens.

10 Create an output parameter with the following properties.

a Create the Name property with the value trigger.

b Create the Type property with the value Trigger.

c Click Create ATTRIBUTE with same name to create the attribute.

d Leave the value as Not set.

11 Define any exception behavior in the Exceptions properties tab.

12 Define a function to generate a Trigger object in the Scripting tab.

For example, you could create a Trigger object by implementing the following JavaScript
function.

trigger = task.createEndOfTaskTrigger(timeout);

The createEndOfTaskTrigger() method returns a Trigger object that monitors a VC:Task object
named task.

13 Click Close.

14 Click Save at the bottom of the workflow editor.

Results

You defined a workflow element that creates a trigger event for a trigger-based long-running
workflow. The trigger element generates a Trigger object as its output parameter, to which a
Waiting Event element can bind.

What to do next

You must bind this trigger event to a Waiting Event element in a trigger-based long-running
workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 143

Create a Trigger-Based Long-Running Workflow

If you know a workflow will have to wait for a response from an outside source during its run, but
do not know how long that wait will last, you can implement it as a trigger-based long-running
workflow. A trigger-based long-running workflow waits for a defined trigger event to occur
before resuming.

You implement a workflow as a trigger-based long-running workflow by using the Waiting Event
element. When the trigger-based long-running workflow arrives at the Waiting Event element, it
will suspend its run and wait in a passive state until it receives a message from the trigger. During
the waiting period, the passive workflow does not consume a thread, but rather the long-running
workflow element passes the workflow information to the single thread that monitors all long-
running workflows in the server.

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Add some elements to the workflow schema.

n Define a trigger event that is encapsulated in a Trigger object.

Procedure

1 Drag a Waiting Event element from the Generic menu to the position in the workflow schema
at which you want to suspend the workflow's run.

The scriptable task that declares the trigger must immediately precede the Waiting Event
element.

2 Click the Edit icon () of the Waiting Event element in the workflow schema.

3 Provide a description of the reason for the wait in the Info properties tab.

4 Click the Attributes properties tab.

The trigger.ref parameter appears in the list of attributes.

5 Click the trigger.ref parameter's Not set link to bind the parameter to an appropriate Trigger
object.

The Waiting Event selection dialog box opens, presenting a list of possible parameters to
which to bind.

6 Select a predefined Trigger object from the proposed list.

This Trigger object represents a trigger event that another workflow or workflow element
defines.

7 Define any exception behavior in the Exceptions properties tab.

8 Click Close.

Developing with VMware vRealize Orchestrator

VMware, Inc. 144

9 Click Save at the bottom of the workflow editor.

Results

You defined a workflow element that suspends a trigger-based long-running workflow, that waits
for a specific trigger event before restarting.

What to do next

You can run a workflow.

Configuration Elements

A configuration element is a list of attributes you can use to configure constants across a whole
Orchestrator server deployment.

All the workflows, actions and policies running in a particular Orchestrator server can use the
attributes you set in a configuration element. Setting attributes in configuration elements lets you
make the same attribute values available to all the workflows, actions and policies running in the
Orchestrator server.

If you create a package containing a workflow, action or policy that uses an attribute from a
configuration element, Orchestrator automatically includes the configuration element in the
package. If you import a package containing a configuration element into another Orchestrator
server, you can import the configuration element attribute values as well. For example, if you
create a workflow that requires attribute values that depend on the Orchestrator server on which
it runs, setting those attributes in a configuration element lets you to export that workflow so
that another Orchestrator server can use it. Configuration elements therefore allow you to
exchange workflows, actions and policies between servers more easily.

Note You cannot import values of a configuration element attribute from a configuration
element exported from Orchestrator 5.1 or earlier.

Create a Configuration Element

Configuration elements allow you to set common attributes across an Orchestrator server. All
elements that are running in the server can call on the attributes you set in a configuration
element. Creating configuration elements allows you to define common attributes once in the
server, rather than individually in each element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Configurations view.

3 Right-click a folder in the hierarchical list of folders and select New folder to create a folder.

4 Enter a name for the folder and click Ok.

5 Right-click the folder you created and select New element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 145

6 Enter a name for the configuration element and click Ok.

The configuration element editor opens.

7 Increment the version number by clicking the version digits in the General tab and providing a
version comment.

8 Provide a description of the configuration element in the Description text box in the General
tab.

9 Click the Attributes tab.

10 Click the Add attribute icon () to create an attribute.

11 Click the attribute values under Name, Type, Value, and Description to set the attribute
name, type, value, and description.

12 To save your new configuration element and close the configuration editor, click Save and
close.

Results

You defined a configuration element that sets common attributes across an Orchestrator server.

What to do next

You can use the configuration element to provide attributes to workflows or actions.

Validating Workflows

Orchestrator provides a workflow validation tool. Validating a workflow helps identify errors in
the workflow and checks that the data flows from one element to the next correctly.

When you validate a workflow, the validation tool creates a list of any errors or warnings. Clicking
an error in the list highlights the workflow element that contains the error.

If you run the validation tool in the workflow editor, the tool provides suggested quick fixes for
the errors it detects. Some quick fixes require you to provide additional information or input
parameters. Other quick fixes resolve the error for you.

Workflow validation checks the data bindings and connections between elements. Workflow
validation does not check the data processing that each element in the workflow performs.
Consequently, a valid workflow can run incorrectly and produce erroneous results if a function in
a schema element is incorrect.

By default, Orchestrator always performs workflow validation when you run a workflow. You can
change the default validation behavior in the Orchestrator client. See Testing Workflows During
Development. For example, sometimes during workflow development you might want to run a
workflow that you know to be invalid, for testing purposes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 146

Validate a Workflow and Fix Validation Errors

You must validate a workflow before you can run it. You can validate workflows in either the
Orchestrator client or in the workflow editor. However, you can only fix validation errors if you
have opened the workflow for editing in the workflow editor.

Prerequisites

Verify that you have a complete workflow to validate, with schema elements linked and bindings
defined.

Procedure

1 Click the Workflows view.

2 Navigate to a workflow in the Workflows hierarchical list.

3 (Optional) Right-click the workflow and select Validate workflow.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of
errors appears.

4 (Optional) Close the Workflow Validation dialog box.

5 Right-click the workflow and select Edit to open the workflow editor.

6 Click the Schema tab.

7 Click the Validate button in the Schema tab toolbar.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of
errors appears.

8 For an invalid workflow, click an error message.

The validation tool highlights the schema element in which the error occurs by adding a red
icon to it. Where possible, the validation tool displays a quick fix action.

n If you agree with the proposed quick fix action, click it to perform that action.

n If you disagree with the proposed quick fix action, close the Workflow Validation dialog
box and fix the schema element manually.

Important Always check that the fix that Orchestrator proposes is appropriate.

For example, the proposed action might be to delete an unused attribute, when in fact that
attribute might not be bound correctly.

9 Repeat the preceding steps until you have eliminated all validation errors.

Results

You validated a workflow and fixed the validation errors.

What to do next

You can run the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 147

Debugging Workflows

Orchestrator provides a workflow debugging tool. You can debug a workflow to inspect the
input and output parameters and attributes at the start of any activity, replace parameter or
attribute values during a workflow run in edit mode, and resume a workflow from the last failed
activity.

You can debug workflows from the standard workflow library and custom workflows. You can
debug custom workflows while developing them in the workflow editor.

Debug a Workflow

You can debug elements of a workflow by adding breakpoints to the elements in the workflow
schema.

When a breakpoint is reached, you have several options to continue the debugging process.
When you debug an element from the workflow schema, you can view general information about
the workflow run, modify the workflow variables, and view log messages.

Prerequisites

Log in to the Orchestrator client as a user who can run workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Select a workflow from the workflow library and click the Schema tab.

4 To add breakpoints to the schema elements that you want to debug, right-click a workflow
element and select Toggle breakpoint.

You can enable or disable the toggled breakpoints.

5 Click the Debug workflow icon ().

If the workflow requires input parameters, you must provide them.

6 When the workflow run is paused after it reaches a breakpoint, select one of the available
options.

Option Description

 Resume Resumes the workflow run until another breakpoint is reached.

 Step into Lets you step into a workflow element.

Note You cannot step into a nested workflow element when you debug a
workflow in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 148

Option Description

 Step over Steps over the current element in the schema and pauses the workflow run
on the next element.

 Step return Exits the workflow element that you have stepped into.

7 (Optional) From the Breakpoints tab, modify the breakpoints.

You can enable, disable, or remove existing breakpoints.

8 (Optional) From the Variables tab, review the variables.

You can modify the values of some of the variables during the debugging process.

Example Workflow Debugging

You can debug a workflow from the standard workflow library.

For example, if you provide an incorrect recipient address, you can correct the value when you
debug the Example interaction with email workflow.

Prerequisites

Log in to the Orchestrator client as a user who can run Mail workflows.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > Mail.

4 Select the Example interaction with email workflow and click the Schema tab.

5 Right-click the Email Send (Interaction) workflow element and select Toggle breakpoint.

6 Click the Debug workflow icon ().

7 Provide the required information.

a In the Destination address text box, type an incomplete recipient address.

For example, name@company.c.

b Select an LDAP group of users who are authorized to answer the query.

c Click Submit.

8 When the breakpoint is reached, click the Step into icon ().

9 On the Variables tab, verify the values.

10 In the toAddress text box, type the correct recipient address value.

For example, name@company.com.

Developing with VMware vRealize Orchestrator

VMware, Inc. 149

11 Click the Resume icon () to continue the workflow run.

Results

The workflow uses the value that you provided during the debugging process and continues the
workflow run.

Running Workflows

An Orchestrator workflow runs according to a logical flow of events.

When you run a workflow, each schema element in the workflow runs according to the following
sequence.

1 The workflow binds the workflow token attributes and input parameters to the schema
element's input parameters.

2 The schema element runs.

3 The schema element's output parameters are copied to the workflow token attributes and
workflow output parameters.

4 The workflow token attributes and output parameters are stored in the database.

5 The next schema element starts running.

This sequence repeats for each schema element until the end of the workflow.

Workflow Token Check Points

When a workflow runs, each schema element is a check point. After each schema element runs,
Orchestrator stores workflow token attributes in the database, and the next schema element
starts running. If the workflow stops unexpectedly, the next time the Orchestrator server restarts,
the currently active schema element runs again, and the workflow continues from the start of the
schema element that was running when the interruption occurred. However, Orchestrator does
not implement transaction management or a rollback function.

End of Workflow

The workflow ends if the current active schema element is an end element. After the workflow
reaches an end element, other workflows or applications can use the workflow's output
parameters.

Run a Workflow in the Workflow Editor

You can run a workflow while you are developing it.

Running a workflow in the workflow editor lets you verify that the workflow runs correctly
without interrupting the development process. You can view log messages that provide
information about the workflow run. If the workflow run returns unexpected results, you can
modify the workflow and run it again without closing the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 150

Prerequisites

n Create a workflow.

n Open the workflow for editing in the workflow editor.

n Validate the workflow.

Procedure

1 Click the Schema tab.

2 Click Run.

3 (Optional) Review the messages in the Logs tab.

Run a Workflow

You can perform automated operations in vCenter Server by running workflows from the
standard library or workflows that you create.

For example, you can create a virtual machine by running the Create simple virtual machine
workflow.

Prerequisites

Verify that you have configured the vCenter Server plug-in. For details, see Installing and
Configuring vRealize Orchestrator.

Procedure

1 From the drop-down menu in the Orchestrator Legacy Client, select Run.

2 Click the Workflows view.

3 In the workflows hierarchical list, open Library > vCenter > Virtual machine management >
Basic to navigate to the Create simple virtual machine workflow.

4 Right-click the Create simple virtual machine workflow and select Start workflow.

5 Provide the general parameters and click Next.

Option Action

Virtual machine name Name the virtual machine orchestrator-test.

Virtual machine folder a Click Not set for the Virtual machine folder value.

b Select a virtual machine folder from the inventory.

The Select button is inactive until you select an object of the correct
type, in this case, VC:VmFolder.

Size of the new disk in GB Enter an appropriate numeric value.

Memory size in MB Enter an appropriate numeric value.

Number of virtual CPUs Select an appropriate number of CPUs from the Number of virtual CPUs
drop-down menu.

Developing with VMware vRealize Orchestrator

VMware, Inc. 151

Option Action

Virtual machine guest OS Click the Not set link and select a guest operating system from the list.

Make the disk thin provisioned Select whether to make the disk thin or thick provisioned.

6 Provide the infrastructure parameters.

Option Description

Host on which to create the virtual
machine

Click Not set for the Host on which to create the virtual machine value and
navigate through the vCenter Server infrastructure hierarchy to a host
machine.

Resource pool Click Not set for the Resource pool value and navigate through the vCenter
Server infrastructure hierarchy to a resource pool.

The network to connect to Click Not set for the The network to connect to value and select a network.

To see all available networks, press Enter in the Filter text box.

Datastore in which to store the
virtual machine files

Click Not set for the Datastore in which to store the virtual machine files
value and navigate through the vCenter Server infrastructure hierarchy to a
datastore.

7 To run the workflow, click Submit.

A workflow token appears under the Create simple virtual machine workflow, showing the
workflow running icon.

8 Click the workflow token to view the status of the workflow as it runs.

9 Click the Events tab in the workflow token view to follow the progress of the workflow token
until it completes.

10 Click the Inventory view.

11 Navigate through the vCenter Server infrastructure hierarchy to the resource pool you
defined.

If the virtual machine does not appear in the list, click the refresh button to reload the
inventory.

The orchestrator-test virtual machine is present in the resource pool.

12 (Optional) Right-click the orchestrator-test virtual machine in the Inventory view to see a
contextual list of the workflows that you can run on the orchestrator-test virtual machine.

Results

The Create simple virtual machine workflow ran successfully.

What to do next

You can log in vSphere Client and manage the new virtual machine.

Developing with VMware vRealize Orchestrator

VMware, Inc. 152

Resuming a Failed Workflow Run

If a workflow fails, Orchestrator provides an option to resume the workflow run from the last
failed activity.

You can change the parameters of the workflow and attempt to resume it, or retain the
parameters and make changes to external components that affect the workflow run. For
example, if a workflow run fails due to a problem in a third-party system, you can make changes
to the system and resume the workflow run from the failed activity, without changing the
workflow parameters and without repeating the successful activities.

Set the Behavior for Resuming a Failed Workflow Run

You can set the behavior for resuming a failed run for each custom workflow. The default
workflows in the library use the default system setting for resuming a failed workflow run.

You can change the default system behavior by modifying a configuration file. See Set Custom
Properties for Resuming Failed Workflow Runs.

Prerequisites

Verify that you have permissions to edit the workflow.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the workflows hierarchical list to navigate to the workflow for which you want to set
the behavior.

4 Right-click the workflow and select Edit.

The workflow editor opens.

5 On the General tab, select an option from the Resume from failed behavior drop-down
menu.

Option Description

System default Follows the default behavior.

Enabled If a workflow run fails, a pop-up window displays an option to resume the
workflow run.

Disabled If a workflow run fails, it cannot be resumed.

6 Click Save and close.

Developing with VMware vRealize Orchestrator

VMware, Inc. 153

Set Custom Properties for Resuming Failed Workflow Runs

By default, Orchestrator is not set up to resume failed workflow runs. You can enable
Orchestrator to resume failed workflow runs and set a custom timeout period after which failed
workflow runs cannot be resumed.

Procedure

1 On the Orchestrator server system, navigate to /etc/vco/app-server/.

2 Open the vmo.properties configuration file in a text editor.

3 Set Orchestrator to resume failed workflow runs by editing the following line in the
vmo.properties file.

com.vmware.vco.engine.execute.resume-from-failed=true

4 Set a custom timeout period for resuming failed workflow runs by editing the following line in
the vmo.properties file.

com.vmware.vco.engine.execute.resume-from-failed.timeout-sec=<seconds>

The value you set overrides the default timeout setting of 86400 seconds.

5 Save the vmo.properties file.

6 Restart the Orchestrator server.

Resume a Failed Workflow Run

You can resume a workflow run from the last failed activity, if resuming a failed run is enabled for
the workflow.

When the option for resuming a failed workflow run is enabled, you can change the parameters
of the workflow and try to resume it by using the options in the pop-up window that appears
after the workflow fails. You can also retain the parameters and make changes to external
components that affect the workflow run. If you do not select an option, the workflow run times
out and cannot be resumed. For modifying the timeout period, see Set Custom Properties for
Resuming Failed Workflow Runs.

Procedure

1 From the drop-down menu in the pop-up window, select Resume and click Next.

If you select Cancel, the workflow run cannot be resumed later.

2 (Optional) Modify the workflow parameters.

3 Click Submit.

Developing with VMware vRealize Orchestrator

VMware, Inc. 154

Generate Workflow Documentation

You can export documentation in PDF format about a workflow or a workflow folder that you
select at any time.

The exported document contains detailed information about the selected workflow or the
workflows in the folder. The information about each workflow includes name, version history of
the workflow, attributes, parameter presentation, workflow schema, and workflow actions. In
addition, the documentation also provides the source code for the used actions.

Procedure

1 From the drop-down menu in the Orchestrator client, select Run or Design.

2 Click the Workflows view.

3 Navigate to the workflow or workflow folder for which you want to generate documentation
and right-click it.

4 Select Generate documentation.

5 Browse to locate the folder in which to save the PDF file, provide a file name, and click Save.

Results

The PDF file containing the information about the selected workflow, or the workflows in the
folder, is saved on your system.

Use Workflow Version History

You can use version history to revert a workflow to a previously saved state. You can revert the
workflow state to an earlier or a later workflow version. You can also compare the differences
between the current state of the workflow and a saved version of the workflow.

Orchestrator creates a version history item for each workflow when you increase and save the
workflow version. Subsequent changes to the workflow do not change the current saved version.
For example, when you create a workflow version 1.0.0 and save it, the state of the workflow is
stored in the version history. If you make any changes to the workflow, you can save the
workflow state in the Orchestrator client, but you cannot apply the changes to workflow version
1.0.0. To store the changes in the version history, you must create a subsequent workflow
version and save it. The version history is kept in the database with the workflow itself.

Prerequisites

Open a workflow for editing in the workflow editor.

Procedure

1 Click the General tab in the workflow editor and click Show version history.

Developing with VMware vRealize Orchestrator

VMware, Inc. 155

2 Select a workflow version and click Diff Against Current to compare the differences.

A window displays the differences between the current workflow version and the selected
workflow version.

3 Select a workflow version and click Revert to restore the state of the workflow.

Caution If you have not saved the current workflow version, it is deleted from the version
history and you cannot revert to the current version.

The workflow state is reverted to the state of the selected version.

Develop a Simple Example Workflow

Developing a simple example workflow demonstrates the most common steps in the workflow
development process.

The example workflow that you are about to create starts an existing virtual machine in vCenter
Server and sends an email to the administrator to confirm that the virtual machine has started.

The example workflow performs the following tasks:

1 Prompts the user to select a virtual machine to start.

2 Prompts the user for an email address to which it can send notifications.

3 Checks whether the selected virtual machine is already powered on.

4 Sends a request to the vCenter Server instance to start the virtual machine.

5 Waits for vCenter Server to start the virtual machine, and returns an error if the virtual
machine fails to start or if starting the virtual machine takes too long.

6 Waits for vCenter Server to start VMware Tools on the virtual machine, and returns an error if
the virtual machine fails to start or if starting VMware Tools takes too long.

7 Verifies that the virtual machine is running.

8 Sends a notification to the provided email address, informing that the machine has started or
that an error occurred.

The ZIP file of Orchestrator examples available for download from the landing page of the
Orchestrator documentation contains a complete version of the Start VM and Send Email
workflow.

The process for developing the example workflow consists of several tasks.

Developing with VMware vRealize Orchestrator

VMware, Inc. 156

Prerequisites

Before you attempt to develop the simple example workflow, read Key Concepts of Workflows.

Procedure

1 Create the Simple Workflow Example

You must begin the workflow development process by creating the workflow in the
Orchestrator client.

2 Create the Schema of the Simple Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains
the elements that the workflow runs and determines the logical flow of the workflow.

3 (Optional) Create the Simple Workflow Example Zones

You can emphasize different zones in workflow by adding workflow notes of different
colors. Creating different workflow zones helps to make complicated workflow schema
easier to read and understand.

4 Define the Parameters of the Simple Workflow Example

In this phase of workflow development, you define the input parameters that the workflow
requires to run. For the example workflow, you need an input parameter for the virtual
machine to power on, and a parameter for the email address of the person to inform about
the result of the operation. When users run the workflow, they will be required to specify the
virtual machine to power on and an email address.

5 Define the Simple Workflow Example Decision Bindings

You bind a workflow's elements together in the Schema tab of the workflow editor. Decision
bindings define how decision elements compare the input parameters received to the
decision statement, and generate output parameters according to whether the input
parameters match the decision statement.

6 Bind the Action Elements of the Simple Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define how
the action elements process input parameters and generate output parameters.

7 Bind the Simple Workflow Example Scripted Task Elements

You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings
define how the scripted task elements process input parameters and generate output
parameters. You also bind the scriptable task elements to their JavaScript functions.

8 Define the Simple Workflow Example Exception Bindings

You define exception bindings in the Schema tab in the workflow editor. Exception bindings
define how elements process errors.

Developing with VMware vRealize Orchestrator

VMware, Inc. 157

9 Set the Read-Write Properties for Attributes of the Simple Workflow Example

You can define whether parameters and attributes are read-only constants or writeable
variables. You can also set limitations on the values that users can provide for input
parameters.

10 Set the Simple Workflow Example Parameter Properties

You can set the parameter properties in the workflow editor. Setting the parameter
properties affects the behavior of the parameter, and places constraints on the possible
values for that parameter.

11 Set the Layout of the Simple Workflow Example Input Parameters Dialog Box

You create the layout or presentation of the input parameters dialog box in the workflow
editor. The input parameters dialog box opens when users run a workflow that needs input
parameters to run.

12 Validate and Run the Simple Workflow Example

After you create a workflow, you can validate it to discover any possible errors. If the
workflow contains no errors, you can run it.

Create the Simple Workflow Example

You must begin the workflow development process by creating the workflow in the Orchestrator
client.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling some virtual machines, at least one of which is powered off

n Access to an SMTP server

n A valid email address

For information about how to install and configure vCenter Server, see the vSphere Installation
and Setup documentation. For information about how to configure Orchestrator to use an SMTP
server, see Installing and Configuring VMware vRealize Orchestrator.

Important This example workflow is created with the workflow editor of the Orchestrator
Legacy Client. Avoid editing legacy workflows in the new HTML5 client, if you plan to continue
using these workflows in your legacy environment.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Right-click the root of the workflows list and select Add folder.

4 Name the new folder Workflow Examples and click OK.

Developing with VMware vRealize Orchestrator

VMware, Inc. 158

5 Right-click the Workflow Examples folder and select New workflow.

6 Name the new workflow Start VM and Send Email and click OK.

The workflow editor opens.

7 In the General tab, click the version number digits to increment the version number.

Because this is the initial creation of the workflow, set the version to 0.0.1.

8 Click the Server restart behavior value in the General tab to set whether the workflow
resumes after a server restart.

9 Type a description of what the workflow does in the Description text box in the General tab.

For example, you can add the following description.

This workflow starts a virtual machine and sends a confirmation email to the

Orchestrator administrator.

10 Click Save at the bottom of the General tab.

Results

You created a workflow called Start VM and Send Email, but you did not define its functions.

What to do next

Create the workflow's schema.

Create the Schema of the Simple Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 From the Generic menu, drag a decision element to the arrow that links the Start element and
the End element in the schema.

3 Double-click the decision element and change its name to VM powered on?.

The decision element corresponds to a boolean function that checks whether the virtual
machine is already powered on.

Developing with VMware vRealize Orchestrator

VMware, Inc. 159

4 From the Generic menu, drag an action element to the red arrow that links the decision
element and an End element.

The dialog box for action selection appears.

5 Type start in the Filter text box, select the startVM action from the filtered list of actions, and
click Select.

6 Drag the following action elements, one after the other, to the blue arrow that links the
startVM action element to an End element.

vim3WaitTaskEnd

Suspends the workflow run and pings an ongoing vCenter Server task at regular intervals,
until that task is finished. The startVM action starts a virtual machine and the vim3WaitTaskEnd
action makes the workflow wait while the virtual machine starts up. After the virtual machine
starts, the vim3WaitTaskEnd lets the workflow resume.

vim3WaitToolsStarted

Suspends the workflow run and waits until VMware Tools starts on the target virtual machine.

7 From the Generic menu, drag a scriptable task element to the blue arrow that links the
vim3WaitToolsStarted action element to an End element.

8 Double-click the scriptable task element and rename it to OK.

9 Drag another scriptable task element to the green arrow that links the VM powered on?
decision element to an End element , and name this scriptable task element Already started.

10 Modify the linking of the Already started scriptable task element.

a Drag the Already started scriptable task element to the left of the startVM action element.

b Delete the blue arrow that connects the Already started scriptable task element to an End
element.

c Link the Already started scriptable task element to the vim3WaitToolsStarted action
element with a blue arrow.

11 From the Generic menu, drag the following scriptable task elements into the schema.

n Drag a scriptable task element to the startVM action element and name the scriptable task
element Start VM Failed.

n Drag a scriptable task element to the vim3WaitTaskEnd action element and name the
scriptable task element Timeout 1.

n Drag a scriptable task element to the vim3WaitToolsStarted action element and name the
scriptable task element Timeout 2.

n Drag a scriptable task element to the blue arrow that links the OK scriptable task element
to an End element, name the new scriptable task element Send Email, and drag it to the
right of the OK scriptable task element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 160

n Link the Start VM Failed, Timeout 1, and Timeout 2 scriptable task elements to the Send
Email scriptable task element with blue arrows.

n Drag a scriptable task element to the Send Email scriptable task element, name the new
scriptable task element Send Email Failed, drag it to the right of the Timeout 2 scriptable
task element, and link it to the End element with a blue arrow.

12 Drag the End element to the right of the Send Email scriptable task element.

13 Click Save at the bottom of the Schema tab.

Results

The following figure shows the layout of the Start VM and Send Email workflow schema
elements.

Figure 1-10. Linking the Elements of the Start VM and Send Email Example Workflow

What to do next

You can highlight different zones in the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 161

Create the Simple Workflow Example Zones

You can emphasize different zones in workflow by adding workflow notes of different colors.
Creating different workflow zones helps to make complicated workflow schema easier to read
and understand.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Drag a workflow note element from the Generic menu into the workflow editor.

2 Position the workflow note over the Already started scriptable task element.

3 Drag the edges of the workflow note to resize it so that it surrounds the Already started
scriptable task element.

4 Double-click the text and add a description.

For example, Path if virtual machine is already powered on.

5 Press Ctrl+E to select the background color.

6 Repeat the preceding steps to highlight other zones in the workflow.

n Place a note over the vertical sequence of elements from the VM powered on? decision
element to the OK element. Add the description Start VM path.

n Place a note over the startVM failed, both Timeout scriptable task elements and the Send
Email Failed scriptable task element. Add the description Error handling.

n Place a note over the Send Email scriptable task element. Add the description Send email.

Results

The following figure shows what the example workflow zones should look like.

Developing with VMware vRealize Orchestrator

VMware, Inc. 162

Figure 1-11. Start VM and Send Email Example Workflow Zones

Initializing

VM powered on?

OK

startVM Start VM failed

vim3WaitTaskEnd Timeout 1

vim3WaitToolsStarted Timeout 2 Send Email Failed

Path if virtual
machine
is already

powered on

Error handling

Send email

Start
VM path

Send Email

What to do next

You must define the workflow's attributes and input and output parameters.

Define the Parameters of the Simple Workflow Example

In this phase of workflow development, you define the input parameters that the workflow
requires to run. For the example workflow, you need an input parameter for the virtual machine
to power on, and a parameter for the email address of the person to inform about the result of
the operation. When users run the workflow, they will be required to specify the virtual machine
to power on and an email address.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 163

Procedure

1 Click the Inputs tab in the workflow editor.

2 Right-click within the Inputs tab and select Add Parameter.

A parameter named arg_in_0 appears in the Inputs tab.

3 Click arg_in_0.

4 Type the name vm in the Choose Attribute Name dialog box and click OK.

5 Click the Type text box and type vc:virtualm in the search text box in the parameter type
dialog box.

6 Select VC:VirtualMachine from the proposed list of parameter types and click Accept.

7 Add a description of the parameter in the Description text box.

For example, type The virtual machine to power on.

8 Repeat Step 2 through Step 7 to create a second input parameter, with the following values.

n Name: toAddress

n Type: String

n Description: The email address to send the result of this workflow to

9 Click Save at the bottom of the Inputs tab.

Results

You defined the workflow's input parameters.

What to do next

Define the bindings between the element parameters.

Define the Simple Workflow Example Decision Bindings

You bind a workflow's elements together in the Schema tab of the workflow editor. Decision
bindings define how decision elements compare the input parameters received to the decision
statement, and generate output parameters according to whether the input parameters match
the decision statement.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 164

Procedure

1 On the Schema tab, click the Edit icon () of the VM Powered On? decision element.

2 On the Decision tab, click the Not set (NULL) button and select vm as the decision element's
input parameter from the list of proposed parameters.

3 Select the Power State equals statement from the list of decision statements proposed in the
drop-down menu.

A Not set button appears in the value text box, which presents you with a limited choice of
possible values.

4 Select poweredOn.

5 Click Save at the bottom of the workflow editor's Schema tab.

Results

You have defined the true or false statement against which the decision element will compare the
value of the input parameter it receives.

What to do next

You must define the bindings for the other elements in the workflow.

Bind the Action Elements of the Simple Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define how the
action elements process input parameters and generate output parameters.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

Developing with VMware vRealize Orchestrator

VMware, Inc. 165

2 Set the following general information on the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text Sending start VM.

Description Leave the text Start / Resume a VM. Return the start task.

3 Click the IN tab.

The IN tab displays the two possible input parameters available to the startVM action, vm and
host.

Orchestrator automatically binds the vm parameter to vm[in-parameter] because the startVM
action can only take a VC:VirtualMachine as an input parameter. Orchestrator detects the vm
parameter you defined when you set the workflow input parameters and so binds it to the
action automatically.

4 Set host to NULL.

This is an optional parameter, so you can set it to null. However, if you leave it set to Not set,
the workflow cannot validate.

5 Click the OUT tab.

The default output parameter that all actions generate, actionResult, appears.

6 For the actionResult parameter, click Not set.

7 Click Create parameter/attribute in workflow.

The Parameter information dialog box displays the values that you can set for this output
parameter. The output parameter type for the startVM action is a VC:Task object.

8 Name the parameter powerOnTask and provide a description.

For example, Contains the result of powering on a VM.

9 Click Create workflow ATTRIBUTE with the same name and click OK to exit the Parameter
information dialog box.

10 Repeat the preceding steps to bind the input and output parameters to the vim3WaitTaskEnd
and vim3WaitToolsStarted action elements.

Simple Workflow Example Action Element Bindings lists the bindings for the vim3WaitTaskEnd
and vim3WaitToolsStarted action elements.

11 Click Save at the bottom of the workflow editor's Schema tab.

Results

The action elements' input and output parameters are bound to the appropriate parameter types
and values.

Developing with VMware vRealize Orchestrator

VMware, Inc. 166

What to do next

Bind the scriptable task elements and define their functions.

Simple Workflow Example Action Element Bindings

Bindings define how the simple workflow example's action elements process input and output
parameters.

When defining bindings, Orchestrator presents parameters you have already defined in the
workflow as candidates for binding. If you have not defined the required parameter in the
workflow yet, the only parameter choice is NULL. Click Create parameter/attribute in workflow to
create a new parameter.

vim3WaitTaskEnd Action

The vim3WaitTaskEnd action element declares constants to track the progress of a task and a
polling rate. The following table shows the input and output parameter bindings that the
vim3WaitTaskEnd action requires.

Table 1-53. Binding Values of the vim3WaitTaskEnd Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

task IN Bind n Local Parameter: powerOnTask

n Source parameter:
task[attribute]

n Type: VC:Task

n Description:
Contains the result of

powering on a VM.

progress IN Create n Local Parameter: progress

n Source parameter:
progress[attribute]

n Type: Boolean

n Value: No (false)

n Description:
Log progress while waiting for

the vCenter Server task to

complete.

Developing with VMware vRealize Orchestrator

VMware, Inc. 167

Table 1-53. Binding Values of the vim3WaitTaskEnd Action (continued)

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

pollRate IN Create n Local Parameter: pollRate

n Source parameter:
pollRate[attribute]

n Type: number

n Value: 2

n Description:
Polling rate in seconds at

which vim3WaitTaskEnd checks

the advancement of the vCenter

Server task.

actionResult OUT Create n Local Parameter:
actionResult[attribute]

n Source parameter:
returnedManagedObject[attribute]

n Type: Any

n Description:
The returned managed object

from the waitTaskEnd action.

vim3WaitToolsStarted Action

The vim3WaitToolsStarted action element waits until VMware Tools have installed on a virtual
machine, and defines a polling rate and a timeout period. The following table shows the input
parameter bindings the vim3WaitToolsStarted action requires.

The vim3WaitToolsStarted action element has no output, so requires no output binding.

Developing with VMware vRealize Orchestrator

VMware, Inc. 168

Table 1-54. Binding Values of the vim3WaitToolsStarted Action

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Automatic binding n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Value: Not editable, variable is
not a workflow attribute.

n Description:
The virtual machine to

start.

pollingRate IN Bind n Local Parameter: pollRate

n Source parameter:
pollRate[attribute]

n Type: number

n Description:
The polling rate in seconds

at which vim3WaitTaskEnd

checks the advancement of

the vCenter server task.

timeout IN Create n Local Parameter: timeout

n Source parameter:
timeout[attribute]

n Type: number

n Value: 10

n Description:
The timeout limit that

vim3WaitToolsStarted waits

before throwing an

exception.

Bind the Simple Workflow Example Scripted Task Elements

You bind a workflow's elements together in the Schema tab of the workflow editor. Bindings
define how the scripted task elements process input parameters and generate output
parameters. You also bind the scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 169

Procedure

1 On the Schema tab, click the Edit icon () of the Already Started scriptable task element.

2 Set the following general information in the Info tab.

Option Action

Interaction Select No External interaction.

Business Status Select the check box and add the text VM already powered on.

Description Leave the text The VM is already powered on, bypassing startVM and
waitTaskEnd, checking if the VM tools are up and running..

3 Click the IN tab.

Because this is a custom scriptable task element, no properties are predefined for you.

4 Click the Bind to workflow parameter/attribute icon ().

5 Select vm from the proposed list of parameters.

6 Leave the OUT and Exception tabs blank.

This element does not generate an output parameter or exception.

7 Click the Scripting tab.

8 Add the following JavaScript function.

//Writes the following event in the Orchestrator database

Server.log("VM '"+ vm.name +"' already started");

9 Repeat the preceding steps to bind the remaining input parameters to the other scriptable
task elements.

Simple Workflow Example Scriptable Task Element Bindings lists the bindings for the Start VM
failed, both Timeout or Error, Send Email Failed, and the OK scriptable task elements.

10 Click Save at the bottom of the workflow editor's Schema tab.

Results

You have bound the scriptable task elements to their input and output parameters and provided
the scripting that defines their function.

What to do next

You must define the exception handling.

Simple Workflow Example Scriptable Task Element Bindings

Bindings define how the simple workflow example's scriptable task elements process input
parameters. You also bind the scriptable task elements to their JavaScript functions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 170

When defining bindings, Orchestrator presents parameters you have already defined in the
workflow as candidates for binding. If you have not defined the required parameter in the
workflow yet, the only parameter choice is NULL. Click Create parameter/attribute in workflow to
create a new parameter.

Start VM Failed Scriptable Task

The Start VM Failed scriptable task element handles any exceptions that the startVM action
throws by setting the content of an email notification about the failure to start the virtual
machine, and writing the event in the Orchestrator log.

The following table shows the input and output parameter bindings that the Start VM Failed
scriptable task element requires.

Table 1-55. Bindings of the Start VM Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to power

on.

errorCode IN Create n Local Parameter: errorCode

n Source parameter:
errorCode[attribute]

n Type: string

n Description:
Catch any exceptions while

powering on a VM.

body OUT Create n Local Parameter: body

n Source parameter:
body[attribute]

n Type: string

n Description: The email body

The Start VM Failed scriptable task element performs the following scripted function.

body = "Unable to execute powerOnVM_Task() on VM '"+vm.name+"', exception found: "+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Unable to execute powerOnVM_Task() on VM '"+vm.name+"', exception found: "+errorCode);

Timeout 1 Scriptable Task Element

The Timeout 1 scriptable task element handles any exceptions that the vim3WaitTaskEnd action
throws by setting the content of an email notification about the failure of the task, and writing the
event in the Orchestrator log.

Developing with VMware vRealize Orchestrator

VMware, Inc. 171

The following table shows the input and output parameter bindings that the Timeout 1 scriptable
task element requires.

Table 1-56. Bindings of the Timeout 1 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to

start.

errorCode IN Bind n Local Parameter: errorCode

n Source parameter:
errorCode[attribute]

n Type: string

n Description:
Catch any exceptions while

powering on a VM.

body OUT Bind n Local Parameter: body

n Source parameter:
body[attribute]

n Type: string

n Description: The email body

The Timeout 1 scriptable task element requires the following scripted function.

body = "Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name+"', exception found:

"+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Error while waiting for poweredOnVM_Task() to complete on VM '"+vm.name+"', exception

found: "+errorCode);

Timeout 2 Scriptable Task Element

The Timeout 2 scriptable task element handles any exceptions that the vim3WaitToolsStarted
action throws by setting the content of an email notification about the failure of the task, and
writing the event in the Orchestrator log.

The following table shows the input and output parameter bindings that the Timeout 2 scriptable
task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 172

Table 1-57. Bindings of the Timeout 2 Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to power

on.

errorCode IN Bind n Local Parameter: errorCode

n Source parameter:
errorCode[attribute]

n Type: string

n Description:
Catch any exceptions while

powering on a VM.

body OUT Bind n Local Parameter: body

n Source parameter:
body[attribute]

n Type: string

n Description: The email body

The Timeout 2 scriptable task element requires the following scripted function.

body = "Error while waiting for VMware tools to be up on VM '"+vm.name+"', exception found:

"+errorCode;

//Writes the following event in the Orchestrator database

Server.error("Error while waiting for VMware tools to be up on VM '"+vm.name+"', exception found:

"+errorCode);

OK Scriptable Task Element

The OK scriptable task element receives notice that the virtual machine has started successfully,
sets the content of an email notification about the successful start of the virtual machine, and
writes the event in the Orchestrator log.

The following table shows the input and output parameter bindings that the OK scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 173

Table 1-58. Bindings of the OK Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to power

on.

body OUT Bind n Local Parameter: body

n Source parameter:
body[attribute]

n Type: string

n Description: The email body

The OK scriptable task element requires the following scripted function.

body = "The VM '"+vm.name+"' has started successfully and is ready for use";

//Writes the following event in the Orchestrator database

Server.log(body);

Send Email Failed Scriptable Task Element

The Send Email Failed scriptable task element receives notice that the sending of the email failed,
and writes the event in the Orchestrator log.

The following table shows the input parameter bindings that the Send Email Failed scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 174

Table 1-59. Bindings of the Send Email Failed Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to power

on.

toAddress IN Bind n Local Parameter: toAddress

n Source parameter: toAddress[in-
parameter]

n Type: string

n Description:
The email address of the

person to inform of the

result of this workflow

emailErrorCode IN Create n Local Parameter: emailErrorCode

n Source parameter:
emailErrorCode[attrbute]

n Type: string

n Description:
Catch any exceptions while

sending an email

The Send Email Failed scriptable task element requires the following scripted function.

//Writes the following event in the Orchestrator database

Server.error("Couldn't send result email to '"+toAddress+"' for VM '"+vm.name+"', exception found:

"+emailErrorCode);

Send Email Scriptable Task Element

The purpose of the Start VM and Send Email workflow is to inform an administrator when it starts
a virtual machine. To do so, you must define the scriptable task that sends an email. To send the
email, the Send Email scriptable task element needs an SMTP server, addresses for the sender
and recipient of the email, the email subject, and the email content.

The following table shows the input and output parameter bindings that the Send Email
scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 175

Table 1-60. Bindings of the Send Email Scriptable Task Element

Parameter Name Binding Type
Bind to Existing or
Create Parameter? Binding Values

vm IN Bind n Local Parameter: vm

n Source parameter: vm[in-
parameter]

n Type: VC:VirtualMachine

n Description:
The virtual machine to power

on.

toAddress IN Bind n Local Parameter: toAddress

n Source parameter: toAddress[in-
parameter]

n Type: string

n Description:
The email address of the

person to inform of the

result of this workflow

body IN Bind n Local Parameter: body

n Source parameter:
body[attribute]

n Type: string

n Description: The email body

smtpHost IN Create n Local Parameter: smtpHost

n Source parameter:
smtpHost[attribute]

n Type: string

n Description:
The email SMTP server

fromAddress IN Create n Local Parameter: fromAddress

n Source parameter:
fromAddress[attribute]

n Type: string

n Description:
The email address of the

sender

subject IN Create n Local Parameter: subject

n Source parameter:
subject[attribute]

n Type: string

n Description: The email subject

The Send Email scriptable task element requires the following scripted function.

//Create an instance of EmailMessage

var myEmailMessage = new EmailMessage() ;

//Apply methods on this instance that populate the email message

Developing with VMware vRealize Orchestrator

VMware, Inc. 176

myEmailMessage.smtpHost = smtpHost;

myEmailMessage.fromAddress = fromAddress;

myEmailMessage.toAddress = toAddress;

myEmailMessage.subject = subject;

myEmailMessage.addMimePart(body , "text/html");

//Apply the method that sends the email message

myEmailMessage.sendMessage();

System.log("Sent email to '"+toAddress+"'");

Define the Simple Workflow Example Exception Bindings

You define exception bindings in the Schema tab in the workflow editor. Exception bindings
define how elements process errors.

The following elements in the workflow return exceptions: startVM, vim3WaitTaskEnd, Send Email,
and vim3WaitToolsStarted.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Open the workflow for editing in the workflow editor.

Procedure

1 On the Schema tab, click the Edit icon () of the startVM action element.

2 Click the Exception tab.

3 Click the Not set button.

4 Select errorCode from the proposed list.

5 Repeat the preceding steps to set the exception binding to errorCode for both
vim3WaitTaskEnd and vim3WaitToolsStarted.

6 Click the Edit icon () of the Send Email scriptable task element.

7 Click the Exception tab.

8 Click the Not set button.

9 Select emailErrorCode from the proposed list.

Developing with VMware vRealize Orchestrator

VMware, Inc. 177

10 Click Save at the bottom of the workflow editor's Schema tab.

Results

You have defined the exception binding for the elements that return exceptions.

What to do next

You must set the read and write properties on the attributes and parameters.

Set the Read-Write Properties for Attributes of the Simple Workflow
Example

You can define whether parameters and attributes are read-only constants or writeable variables.
You can also set limitations on the values that users can provide for input parameters.

Setting certain parameters to read-only allows other developers to adapt the workflow or to
modify it without breaking the workflow's core function.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab at the top of the workflow editor.

Under Attributes is a list of all the defined attributes, with check boxes next to each attribute.
When you select these check boxes, you set attributes as read-only.

2 Select the check boxes to make the following attributes read-only constants:

n progress

n pollRate

n timeout

n smtpHost

n fromAddress

Developing with VMware vRealize Orchestrator

VMware, Inc. 178

n subject

Results

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

Set the parameter properties and place constraints on the possible values for that parameter.

Set the Simple Workflow Example Parameter Properties

You can set the parameter properties in the workflow editor. Setting the parameter properties
affects the behavior of the parameter, and places constraints on the possible values for that
parameter.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

The two input parameters you defined for this workflow are listed.

2 Click the (VC:VirtualMachine)vm parameter.

3 Add a description in the General tab in the bottom half of the screen.

For example, type The virtual machine to start.

4 Click the Properties tab in the bottom half of the screen.

On this tab, you can set the properties for the (VC:VirtualMachine)vm parameter.

5 Click the Add property icon ().

Developing with VMware vRealize Orchestrator

VMware, Inc. 179

6 From the list of proposed properties, select the Mandatory input property, click Ok, and set
its value to Yes.

When you enable this property, users cannot run the Start VM and Send Email workflow
without providing a virtual machine to start.

7 Click the Add property icon ().

8 From the list of proposed properties, select Select value as, click Ok, and select list from the
list of possible values.

When you set this property, you set how the user selects the value of the
(VC:VirtualMachine)vm input parameter.

9 Click the (string)toAddress parameter in the top half of the Presentation tab.

10 Add a description in the Description tab in the bottom half of the screen.

For example, type The email address of the person to notify.

11 Click the Properties tab for (string)toAddress and click the Add property icon ().

12 From the list of proposed properties, select the Mandatory input property, click Ok, and set
its value to Yes.

13 Click the Add property icon ().

14 From the list of proposed properties, select Matching regular expression and click Ok.

This property allows you to set constraints on what users can provide as input .

15 Click the Value text box for Matching regular expression and set the constraints to
[a-zA-Z0-9_%-+.]+@[a-zA-Z0-9-.]+\.[a-zA-Z]{2,4}.

Setting these constraints limits user input to characters that are appropriate for email
addresses. If the user tries to input any other character for the email address of the recipient
when they start the workflow, the workflow does not start.

Results

You have made both parameters mandatory, defined how the user can select the virtual machine
to start, and limited the characters that can be input for the recipient's email address.

What to do next

You must create the layout, or presentation, of the input parameters dialog box in which users
specify a workflow's input parameter values when they run it.

Set the Layout of the Simple Workflow Example Input Parameters
Dialog Box

You create the layout or presentation of the input parameters dialog box in the workflow editor.
The input parameters dialog box opens when users run a workflow that needs input parameters
to run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 180

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Set the Read-Write Properties for Attributes of the Simple Workflow Example.

n Set the Simple Workflow Example Parameter Properties.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

2 Right-click the Presentation node in the presentation hierarchical list and select Create
display group.

A New step node and a New group sub-node appear under the Presentation node.

3 Right-click New step and select Delete.

Because this workflow has only two parameters, you do not need multiple layers of display
sections in the input parameters dialog box.

4 Double-click New group to edit the group name and press Enter.

For example, name the display group Virtual Machine.

The text you enter here appears as a heading in the input parameter dialog box when users
start the workflow.

5 In the Description text box of the General tab at the bottom of the Presentation tab, provide
a description for the new display group.

For example, type Select the virtual machine to start.

The text you type here appears as a prompt in the input parameter dialog box when users
start the workflow.

6 Drag the (VC:VirtualMachine)vm parameter under the Virtual Machine display group.

In the input parameters dialog box, a text box in which the user types the virtual machine
name will appear under a Virtual Machine heading.

Developing with VMware vRealize Orchestrator

VMware, Inc. 181

7 Repeat the preceding steps to create a display group for the toAddress parameter, setting
the following properties:

a Create a display group and name it Recipient's Email Address.

b Add a description for the display group, for example,
Enter the email address of the person to notify when this virtual machine is

powered-on.

c Drag the toAddress parameter under the Recipient's Email Address display group.

Results

You have set up the layout of the input parameters dialog box that appears when users run the
workflow.

What to do next

You have completed the development of the simple workflow example. You can now validate
and run the workflow.

Validate and Run the Simple Workflow Example

After you create a workflow, you can validate it to discover any possible errors. If the workflow
contains no errors, you can run it.

Prerequisites

Complete the following tasks.

n Create the Simple Workflow Example.

n Create the Schema of the Simple Workflow Example.

n Define the Parameters of the Simple Workflow Example.

n Define the Simple Workflow Example Decision Bindings.

n Bind the Action Elements of the Simple Workflow Example.

n Bind the Simple Workflow Example Scripted Task Elements.

n Define the Simple Workflow Example Exception Bindings.

n Set the Read-Write Properties for Attributes of the Simple Workflow Example.

n Set the Simple Workflow Example Parameter Properties.

n Set the Layout of the Simple Workflow Example Input Parameters Dialog Box.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click Validate in the Schema tab of the workflow editor.

The validation tool locates any errors in the definition of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 182

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow
editor.

You return to the Orchestrator client.

3 Click the Workflows view.

4 Select Workflow Examples > Start VM and Send Email in the workflow hierarchical list.

5 Right-click the Start VM and Send Email workflow and select Start workflow.

The input parameters dialog box opens and prompts you for a virtual machine to start and an
email address to send notifications to.

6 Select a virtual machine to start from the vCenter Server inventory.

7 Type an email address to which to send email notifications.

8 Click Submit to start the workflow.

A workflow token appears under the Start VM and Send Email workflow.

9 Click the workflow token to follow the progress of the workflow as it runs.

Results

If the workflow runs successfully, the virtual machine you selected is in the powered-on state,
and the email recipient you defined receives a confirmation email.

What to do next

You can generate a document in which to review information about the workflow. See Generate
Workflow Documentation.

Develop a Complex Workflow

Developing a complex example workflow demonstrates the most common steps in the workflow
development process and more advanced scenarios, such as creating custom decisions and
loops.

In the complex workflow exercise, you develop a workflow that takes a snapshot of all the virtual
machines contained in a given resource pool. The workflow you create will perform the following
tasks:

1 Prompts the user for a resource pool that contains the virtual machines of which to take
snapshots.

2 Determines whether the resource pool contains running virtual machines.

3 Determines how many running virtual machines the resource contains.

4 Verifies whether an individual virtual machine running in the pool meets specific criteria for a
snapshot to be taken.

5 Takes the snapshot of the virtual machine.

Developing with VMware vRealize Orchestrator

VMware, Inc. 183

6 Determines whether more virtual machines exist in the pool of which to take snapshots.

7 Repeats the verification and snapshot process until the workflow has taken snapshots of all
eligible virtual machines in the resource pool.

The ZIP file of Orchestrator examples that you can download from the landing page of the
Orchestrator documentation contains a completed version of the Take a Snapshot of All Virtual
Machines in a Resource Pool workflow.

Prerequisites

Before you attempt to develop this complex workflow, follow the exercises in Develop a Simple
Example Workflow. The procedures to develop a complex workflow provide the broad steps of
the development process, but are not as detailed as the simple workflow exercises.

Procedure

1 Create the Complex Workflow Example

You must begin the workflow development process by creating the workflow in the
Orchestrator client.

2 Create a Custom Action for the Complex Workflow Example

The Check VM scriptable element calls on an action that does not exist in the Orchestrator
API. You must create the getVMDiskModes action.

3 Create the Schema of the Complex Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains
the elements that the workflow runs, and determines the logical flow of the workflow.

4 (Optional) Create the Complex Workflow Example Zones

Optionally, you can highlight different zones of the workflow by adding workflow notes.
Creating different workflow zones helps to make complicated workflow schema easier to
read and understand.

5 Define the Parameters of the Complex Workflow Example

You define workflow parameters in the workflow editor. The input parameters provide data
for the workflow to process. The output parameters are the data the workflow returns when
it completes its run.

6 Define the Bindings for the Complex Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define the
data flow of the workflow. You also bind the scriptable task elements to their JavaScript
functions.

7 Set the Complex Workflow Example Attribute Properties

You set the attribute properties in the General tab in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 184

8 Create the Layout of the Complex Workflow Example Input Parameters

You create the layout, or presentation, of the input parameters dialog box in the
Presentation tab of the workflow editor. The input parameters dialog box opens when users
run a workflow, and is the means by which users enter the input parameters with which the
workflow runs.

9 Validate and Run the Complex Workflow Example

After you create a workflow, you can validate it to detect any possible errors. If the
workflow contains no errors, you can run it.

Create the Complex Workflow Example

You must begin the workflow development process by creating the workflow in the Orchestrator
client.

For information about how to install and configure vCenter Server, see the vSphere Installation
and Setup documentation. For information about how to configure Orchestrator, see Installing
and Configuring VMware vRealize Orchestrator.

Prerequisites

Verify that the following components are installed and configured on the system.

n vCenter Server, controlling a resource pool that contains some virtual machines

n The Workflow Examples folder in the workflows hierarchical list, that you created in Create
the Simple Workflow Example.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Select Workflows > Workflow Examples.

3 Right-click the Workflow Examples folder and select New workflow.

4 Name the new workflow Take a Snapshot of All Virtual Machines in a Resource Pool
and click OK.

The workflow editor opens.

5 On the General tab of the workflow editor, click the version number digits to increment the
version number.

For the initial creation of the workflow, set the version to 0.0.1.

6 Click the Server restart behavior value to set whether the workflow resumes after a server
restart.

7 In the Description text box, type a description of what the workflow does.

8 Click Save at the bottom of the General tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 185

Results

You created the Take a Snapshot of All Virtual Machines in a Resource Pool workflow.

What to do next

You must create a custom action.

Create a Custom Action for the Complex Workflow Example

The Check VM scriptable element calls on an action that does not exist in the Orchestrator API. You
must create the getVMDiskModes action.

For more detail about creating actions, see Chapter 3 Developing Actions.

Prerequisites

Create the Take a Snapshot of All Virtual Machines in a Resource Pool workflow. See Create the
Complex Workflow Example.

Procedure

1 Close the workflow editor by clicking Save and Close.

2 Click the Actions view in the Orchestrator client.

3 Right-click the root of the actions hierarchical list and select New Module.

4 Name the new module com.vmware.example.

5 Right-click the com.vmware.example module and select Add Action.

6 Create an action called getVMDiskModes.

7 Increment the version number in the General tab in the actions editor by clicking the version
digits.

8 Add the following description of the action in the General tab.

This action returns an array containing the disk modes of all disks on a VM.

The elements in the array each have one of the following string values:

- persistent

- independent-persistent

- nonpersistent

- independent-nonpersistent

Legacy values:

- undoable

- append

9 Click the Scripting tab.

10 Right-click in the top pane of the Scripting tab and select Add Parameter to create the
following input parameter.

n Name: vm

n Type: VC:VirtualMachine

Developing with VMware vRealize Orchestrator

VMware, Inc. 186

n Description: The virtual machine for which to return the Disk Modes

11 Add the following scripting in the bottom of the Scripting tab.

The following code returns an array of disk modes for the disks of the virtual machine.

var devicesArray = vm.config.hardware.device;

var retArray = new Array();

if (devicesArray!=null && devicesArray.length!=0) {

 for (i in devicesArray) {

 if (devicesArray[i] instanceof VcVirtualDisk) {

 retArray.push(devicesArray[i].backing.diskMode);

 }

 }

}

return retArray;

12 Click Save and Close to exit the Actions palette.

Results

You have defined the custom action the Take a Snapshot of All Virtual Machines in a Resource
Pool workflow requires.

What to do next

Create the workflow's schema.

Create the Schema of the Complex Workflow Example

You can create a workflow's schema in the workflow editor. The workflow schema contains the
elements that the workflow runs, and determines the logical flow of the workflow.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create a Custom Action for the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Add the following schema elements to the workflow schema.

Element Type Element Name Position in Schema

Scriptable task Initializing Below the Start element

Decision VMs to Process? Below the Initializing scriptable task element

Scriptable task Pool Has No VMs Below the VMs to Process? custom decision element, linked with a red arrow

Developing with VMware vRealize Orchestrator

VMware, Inc. 187

Element Type Element Name Position in Schema

Custom decision Remaining VMs? Right of the VMs to Process? custom decision element, linked with a green
arrow

Action getVMDiskModes Right of the Remaining VMs? custom decision element, linked with a green
arrow

Custom decision Create Snapshot? Right of the getVMDiskModes action element, linked with a blue arrow

Workflow Create a snapshot Above the Create Snapshot? custom decision element, linked with a green
arrow

Scriptable task VM Snapshots Left of the Create a snapshot workflow, linked with a blue arrow

Scriptable task Increment Left of the VM Snapshots scriptable task element, linked with a blue arrow

Scriptable task Set Output Right of the Pool Has No VMs scriptable task element, linked with a blue arrow

3 Add a Log Exception scriptable task element.

a Create an exception handling link from the Create a snapshot workflow to an End element.

b Drag a scriptable task element to the red dashed arrow that links the Create a snapshot
workflow to an End element.

c Double-click the scriptable task element and rename it to Log Exception.

d Move the Log Exception scriptable task element to above the VM Snapshots scriptable task
element.

4 Unlink all End elements except the End element that is at the right of the Set Output scriptable
task element.

5 Link the remaining elements as described in the following table.

Element Link to Type of Arrow Description

getVMDiskModes action element Log Exception scriptable task
element

Red dashed Exception handling

Create Snapshot? custom decision
element

Increment scriptable task element Red False result

Log Exception scriptable task
element

Increment scriptable task element Blue Normal workflow
progression

Increment scriptable task element Remaining VMs? custom decision
element

Blue Normal workflow
progression

Remaining VMs? custom decision
element

Set Output scriptable task
element

Red False result

6 Click Save at the bottom of the Schema tab.

Results

The following figure shows what the linked elements of the Take a Snapshot of All Virtual
Machines in a Resource Pool workflow should look like.

Developing with VMware vRealize Orchestrator

VMware, Inc. 188

Figure 1-12. Linking of the Take a Snapshot of All Virtual Machines in a Resource Pool Example
Workflow

What to do next

You can optionally define workflow zones by using workflow notes.

Create the Complex Workflow Example Zones

Optionally, you can highlight different zones of the workflow by adding workflow notes. Creating
different workflow zones helps to make complicated workflow schema easier to read and
understand.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 189

Procedure

1 Create the following workflow zones by using workflow notes.

Elements in Zone Description

Start element; Initialize scriptable
task; VMs to Process? custom
decision

Get an array of virtual machines from a resource pool, initialize

the counter of the Array and set the first virtual machine to be

treated, if any.

Pool has no VMs scriptable task. Resource pool contains no virtual machines of which to take

snapshots.

VMs remaining? custom decision;
getVMDisksModes action, Create
Snapshot? decision; Create a
snapshot workflow; VM Snapshots
scriptable task; Increment scriptable
task; Log Exception scriptable task

Check whether any virtual machines remain in the resource pool,

check that a virtual machine meets the snapshot criteria, take a

snapshot, then loop until a snapshot has been taken of all the

virtual machines.

Set Output scriptable task; End
element

Generates the resulting array of virtual machines of which

snapshots have been taken.

2 Select a workflow note and press Ctrl+E to select the background color.

3 Click Save at the bottom of the workflow editor Schema tab.

Results

Your workflow zones should look like the following diagram.

Developing with VMware vRealize Orchestrator

VMware, Inc. 190

Figure 1-13. Schema Diagram for Take Snapshot of all Virtual Machines in a Resource Pool
Example Workflow

Resource pool
contains no virtual
machines of which
to take snapshots.

Get an array of virtual machines
from a resource pool, initialize

the counter of the array and set
the first virtual machine to be

treated, if any.

Initializing

Scriptable task

VMs to Pocess?

Check whether any virtual machines
remain in the resource pool, check that a

virtual machine meets the snapshot criteria,
take a snapshot, then loop until a snapshot
has been taken of all the virtual machines.

Generates the resulting array
of virtual machines of which
snapshots have been taken.

Ignore error if no

Create a Snapshot

Set VMSet VM

Increment Counter

What to do next

You must define the workflow's input and output parameters.

Define the Parameters of the Complex Workflow Example

You define workflow parameters in the workflow editor. The input parameters provide data for
the workflow to process. The output parameters are the data the workflow returns when it
completes its run.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 191

Procedure

1 Click the Inputs tab in the workflow editor.

2 Define the following input parameter.

n Name: resourcePool

n Type: VC:ResourcePool

n Description:
The resource pool containing the virtual machines of which to take snapshots.

3 Click the Outputs tab in the workflow editor.

4 Define the following output parameter.

n Name: snapshotVmArrayOut

n Type: Array/VC:VirtualMachine

n Description: The Array of virtual machines of which snapshots have been taken.

Results

You have defined the workflow's input and output parameters.

What to do next

You must define the bindings between the element parameters.

Define the Bindings for the Complex Workflow Example

You can bind a workflow's elements together in the workflow editor. Bindings define the data
flow of the workflow. You also bind the scriptable task elements to their JavaScript functions.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example

n Define the Parameters of the Complex Workflow Example

n Review the bindings that you must define. See Complex Workflow Example Bindings.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Schema tab in the workflow editor.

2 Define the bindings.

3 Click Save at the bottom of the Schema tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 192

Results

All the input and output parameters of the elements are bound to the appropriate parameter
types and values.

What to do next

Set the attribute properties.

Complex Workflow Example Bindings

Bindings define how the simple workflow example's action elements process input and output
parameters.

The Take Snapshots of All Virtual Machines in a Resource Pool workflow requires the following
input and output parameter bindings. You also define the JavaScript functions for the scriptable
task elements.

In cases in which you bind to existing parameters, the binding inherits the type and description
values from the original parameter.

Initializing Scriptable Task

The Initializing scriptable task element initializes the attributes of the workflow. The following
table shows the input and output parameter bindings that the Initializing scriptable task element
requires.

Table 1-61. Bindings of the Initializing Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool

n Source parameter:
resourcePool[in-parameter]

n Type: VC:ResourcePool

n Description:
The resource pool containing

the virtual machines of which

to take snapshots

allVMs OUT Create n Local parameter: allVMs

n Source parameter:
allVMs[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The virtual machines in the

resource pool.

Developing with VMware vRealize Orchestrator

VMware, Inc. 193

Table 1-61. Bindings of the Initializing Scriptable Task Element (continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs OUT Create n Local parameter: numberOfVMs

n Source parameter:
numberOfVMs[attribute]

n Type: number

n Description:
The number of virtual machines

found in the resourcePool

vmCounter OUT Create n Local parameter: vmCounter

n Source parameter:
vmCounter[attribute]

n Type: number

n Description:
The counter of the virtual

machines inside the array

vm OUT Create n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
The current virtual machine

having a snapshot taken

snapshotVmArray OUT Create n Local parameter: snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The Array of virtual machines

of which snapshots have been

taken

The Initialize scriptable task element performs the following scripted function.

//Retrieve an array of virtual machines contained in the specified Resource Pool

allVMs = resourcePool.vm;

//Initialize the size of the Array and the first VM to snapshot

if (allVMs!=null && allVMs.length!=0) {

 numberOfVms = allVMs.length;

 vm = allVMs[0];

} else {

 numberOfVms = 0;

}

//Initialize the VM counter

vmCounter = 0;

//Initializing the array of VM snapshots

snapshotVmArray = new Array();

Developing with VMware vRealize Orchestrator

VMware, Inc. 194

VMs to Process? Decision Element

The VMs to Process? decision element determines whether any virtual machines of which to take
snapshots exist in the resource pool. The following table shows the bindings that the VMs to
Process? decision element requires.

Table 1-62. Bindings of the VMs to Process? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs Decision Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than

n Value: 0.0

n Description:
The number of virtual machines

found in the resourcePool

Pool Has No VMs Scriptable Task Element

The Pool Has No VMs scriptable task element logs the fact that the resource pool contains no
eligible virtual machines in the Orchestrator database. The following table shows the bindings
that the Pool Has No VMs scriptable task element requires.

Table 1-63. Bindings of the Pool Has No VMs Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

resourcePool IN Bind n Local parameter: resourcePool

n Source parameter:
resourcePool[in-parameter]

n Type: VC:ResourcePool

n Description:
The resource pool containing

the virtual machines of which

to take snapshots.

The Pool Has No VMs scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.warn("The specified ResourcePool "+resourcePool.name+" does not contain any VMs.");

Remaining VMs? Custom Decision Element

The Remaining VMs? custom decision element determines whether any virtual machines of which
to take snapshots remain in the resource pool. The following table shows the bindings that the
Remaining VMs? custom decision element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 195

Table 1-64. Bindings of the Remaining VMs? Custom Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

numberOfVMs IN Bind n Source parameter:
numberOfVMs[attribute]

n Decision statement: Greater than

n Value: 0.0

n Description:
The number of virtual machines

found in the resourcePool

vmCounter IN Bind n Local parameter: vmCounter

n Source parameter:
vmCounter[attribute]

n Type: number

n Description:
The counter of the virtual

machines inside the array

The Remaining VMs? custom decision element performs the following scripted function.

//Checks if the workflow has reached the end of the array of VMs

if (vmCounter < numberOfVms) {

 return true;

} else {

 return false;

}

getVMDisksModes Action Element

The getVMDisksModes action element obtains the modes of the disks running in a virtual machine.
The following table shows the bindings that the getVMDisksModes action element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 196

Table 1-65. Bindings of the getVMDisksModes Action Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
The current virtual machine

having a snapshot taken

actionResult OUT Create n Local parameter: actionResult

n Source parameter:
vmDisksModes[attribute]

n Type: Array/String

n Description:
The current Disks Modes of the

virtual machine

errorCode Exception Create Local parameter: errorCode

Create Snapshot? Custom Decision Element

The Create Snapshot? custom decision element determines whether to take snapshots of virtual
machines, depending on the disk modes of the virtual machines. The following table shows the
bindings that the Create Snapshot? custom decision element requires.

Table 1-66. Bindings of the Create Snapshot? Decision Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmDisksMode IN Bind n Local parameter: vmDisksMode

n Source parameter:
vmDisksMode[attribute]

n Type: Array/String

n Description:
The current Disks Modes of the

virtual machine

vm IN Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
The current virtual machine

having a snapshot taken

The Create Snapshot? custom decision element custom decision element performs the following
scripted function.

//A snapshot cannot be taken if one of its disks is in independent mode

// (independent-persistent or independent-nonpersistent)

Developing with VMware vRealize Orchestrator

VMware, Inc. 197

var containsIndependentDisks = false;

if (vmDisksModes!=null && vmDisksModes.length>0) {

 for (i in vmDisksModes) {

 if (vmDisksModes[i].charAt(0)=="i") {

 containsIndependentDisks = true;

 }

 }

} else {

 //if no disk found no need to try to snapshot the VM

 System.warn("Won't snapshot '"+vm.name+"', no disks found");

 return false;

}

if (containsIndependentDisks) {

 System.warn("Won't snapshot '"+vm.name+"', independent disk(s) found");

 return false;

} else {

 System.log("Snapshoting '"+vm.name+"'");

 return true;

}

Create a snapshot Workflow Element

The Create a snapshot workflow element takes snapshots of virtual machines. The following table
shows the bindings that the Create a snapshot workflow element requires.

Table 1-67. Bindings of the Create a snapshot Workflow Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
An active virtual machine of

which to take a snapshot.

name IN Create n Local parameter: name

n Source parameter:
snapshotName[attribute]

n Type: string

n Description:
The name for this snapshot.

The name does not need to be

unique for this virtual

machine.

description IN Create n Local parameter: description

n Source parameter:
snapshotDescription[attribute]

n Type: string

n Description:
A description for this

snapshot.

Developing with VMware vRealize Orchestrator

VMware, Inc. 198

Table 1-67. Bindings of the Create a snapshot Workflow Element (continued)

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

memory IN Create n Local parameter: memory

n Source parameter:
snapshotMemory[attribute]

n Type: Boolean

n Value: no

n Description:
If TRUE, a dump of the

internal state of the virtual

machine (a memory dump) is

included in the snapshot.

quiesce IN Create n Local parameter: quiesce

n Source parameter:
snapshotQuiesce[attribute]

n Type: Boolean

n Value: yes

n Description:
If TRUE and the virtual

machine is powered on when the

snapshot is taken, the VMware

Tools are used to quiesce the

file system in the virtual

machine.

snapshot OUT Create n Local parameter: snapshot

n Source parameter: NULL

n Type: VC:VirtualMachineSnapshot

n Description: The snapshot taken.

errorCode Exception Create Local parameter: errorCode

VM Snapshots Scriptable Task Element

The VM Snapshots scriptable task element adds the snapshots to an array. The following table
shows the bindings that the VM Snapshots scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 199

Table 1-68. Bindings of the VM Snapshots Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
An active virtual machine of

which to take a snapshot.

snapshotVmArray IN Bind n Local parameter: snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The Array of virtual machines

of which snapshots have been

taken

snapshotVmArray OUT Bind n Local parameter: snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The Array of virtual machines

of which snapshots have been

taken

The VM Snapshots scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.log("Successfully took snapshot of the VM '"+vm.name);

//Inserts the VM snapshot in an array

snapshotVmArray.push(vm);

Increment Scriptable Task Element

The Increment scriptable task element increments the counter that counts the number of virtual
machines in the array. The following table shows the bindings that the Increment scriptable task
element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 200

Table 1-69. Bindings of the Increment Scriptable Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vmCounter IN Bind n Local parameter: vmCounter

n Source parameter:
vmCounter[attribute]

n Type: number

n Description:
The counter of the virtual

machines inside the array

allVMs IN Bind n Local parameter: allVMs

n Source parameter:
allVMs[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The virtual machines in the

resource pool.

vmCounter OUT Bind n Local parameter: vmCounter

n Source parameter:
vmCounter[attribute]

n Type: number

n Description:
The counter of the virtual

machines inside the array

vm OUT Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
The current virtual machine

having a snapshot taken

The Increment scriptable task element performs the following scripted function.

//Increases the array VM counter

vmCounter++;

//Sets the next VM to be snapshot in the attribute vm

vm = allVMs[vmCounter];

Log Exception Scriptable Task Element

The Log Exception scriptable task element handles exceptions from the workflow and action
elements. The following table shows the bindings that the Log Exception scriptable task element
requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 201

Table 1-70. Bindings of the Log Exception Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

vm IN Bind n Local parameter: vm

n Source parameter: vm[attribute]

n Type: VC:VirtualMachine

n Description:
The current virtual machine

having a snapshot taken

errorCode IN Bind n Local parameter: errorCode

n Source parameter:
errorCode[attribute]

n Type: string

n Description:
An exception caught while

taking a snapshot of a virtual

machine

The Log Exception scriptable task element performs the following scripted function.

//Writes the following event in the Orchestrator database

Server.error("Coudln't snapshot the VM '"+vm.name+"', exception: "+errorCode);

Set Output Scriptable Task Element

The Set Output scriptable generates the workflow's output parameter, that contains the array of
virtual machines of which snapshots have been taken. The following table shows the bindings
that the Set Output scriptable task element requires.

Developing with VMware vRealize Orchestrator

VMware, Inc. 202

Table 1-71. Bindings of the Set Output Task Element

Parameter Name Binding Type

Bind to Existing
or Create
Parameter? Binding Values

snapshotVmArray IN Bind n Local parameter: snapshotVmArray

n Source parameter:
snapshotVmArray[attribute]

n Type: Array/VC:VirtualMachine

n Description:
The Array of virtual machines

of which snapshots have been

taken

snapshotVmArrayOut OUT Bind n Local parameter:
snapshotVmArrayOut

n Source parameter:
snapshotVmArrayOut[out-parameter]

n Type: Array/VC:VirtualMachine

n Description:
The Array of virtual machines

of which snapshots have been

The Set Output scriptable task element performs the following scripted function.

//Passes the value of the internal attribute to a workflow output parameter

snapshotVmArrayOut = snapshotVmArray;

Set the Complex Workflow Example Attribute Properties

You set the attribute properties in the General tab in the workflow editor.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the General tab.

2 Select the read-only check box of the following attributes to make them read-only constants:

n snapshotName

n snapshotDescription

n snapshotMemory

Developing with VMware vRealize Orchestrator

VMware, Inc. 203

n snapshotQuiesce

Results

You have defined which of the workflow's attributes are constants and which are variables.

What to do next

You must create the workflow presentation, which creates the layout of the input parameters
dialog box in which users specify a workflow's input parameter values when they run it.

Create the Layout of the Complex Workflow Example Input
Parameters

You create the layout, or presentation, of the input parameters dialog box in the Presentation
tab of the workflow editor. The input parameters dialog box opens when users run a workflow,
and is the means by which users enter the input parameters with which the workflow runs.

Prerequisites

Complete the following tasks.

n Create the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Parameters of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Set the Complex Workflow Example Attribute Properties.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click the Presentation tab in the workflow editor.

The Take a Snapshot of All Virtual Machines in a Resource Pool workflow has only one input
parameter, so creating the presentation is straightforward.

2 Right-click the Presentation node in the presentation hierarchical list and select Create
display group.

3 Delete the New step element that appears above the New group element.

4 Double-click the New group element and change the group name to Resource Pool.

5 Provide a description of the Resource Pool display group in the Description text box on the
General tab at the bottom of the Presentation tab.

For example,
Enter the name of the resource pool that contains the virtual machines of which

to take a snapshot.

6 Click the (VC:ResourcePool)resourcePool parameter.

Developing with VMware vRealize Orchestrator

VMware, Inc. 204

7 Click the Properties tab for (VC:ResourcePool)resourcePool.

8 Right-click within the Properties tab and select Add Property > Mandatory input.

9 Right-click within the Properties tab and select Add Property > Select value as.

When you set this property, you set how the user selects the value of the
(VC:ResourcePool)resourcePool input parameter.

10 Drag the (VC:ResourcePool)resourcePool parameter under the Resource Pool display
group.

Results

You have created the layout of the dialog box that appears when users run the workflow.

What to do next

You have completed the development of the complex workflow example. You can now validate
and run the workflow.

Validate and Run the Complex Workflow Example

After you create a workflow, you can validate it to detect any possible errors. If the workflow
contains no errors, you can run it.

Prerequisites

Create a workflow, lay out its schema, define the links and bindings, define the parameter
properties, and create the presentation of the input parameters dialog box.

Complete the following tasks.

n Create the Complex Workflow Example.

n Create a Custom Action for the Complex Workflow Example.

n Create the Schema of the Complex Workflow Example.

n Define the Parameters of the Complex Workflow Example.

n Define the Bindings for the Complex Workflow Example.

n Set the Complex Workflow Example Attribute Properties.

n Create the Layout of the Complex Workflow Example Input Parameters.

n Open the workflow for editing in the workflow editor.

Procedure

1 Click Validation in the Schema tab of the workflow editor.

The validation tool detects any errors in the definition of the workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 205

2 After you have eliminated any errors, click Save and Close at the bottom of the workflow
editor.

You return to the Orchestrator client.

3 Click the Workflows view.

4 In the workflow hierarchical list, select Workflow Examples > Take a Snapshot of All Virtual
Machines in a Resource Pool.

5 Right-click the Take a Snapshot of All Virtual Machines in a Resource Pool workflow and
select Start workflow.

The input parameters dialog box opens and prompts you for a resource pool that contains
the virtual machines of which to take a snapshot.

6 Click Submit to run the workflow.

A workflow token appears under the Take a Snapshot of All Virtual Machines in a Resource
Pool workflow.

7 Click the workflow token to follow the progress of the workflow as it runs.

Results

If the workflow runs successfully, the workflow takes a snapshot of all of the virtual machines in
the selected resource pool.

What to do next

You can generate a document in which to review information about the workflow. See Generate
Workflow Documentation.

Developing with VMware vRealize Orchestrator

VMware, Inc. 206

Scripting 2
Orchestrator uses JavaScript to create building blocks from which you create actions, workflow
elements, and policies that access the APIs of the technologies that you plug into Orchestrator.

Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine as its scripting engine. The scripting
engine provides variable type checking, name space management, automatic completion, and
exception handling.

The Orchestrator workflow engine allows you to use basic JavaScript language features, such as
if, loops, arrays, and strings. You can use objects in scripting that the Orchestrator API provides,
or objects from any other API that you import into Orchestrator through a plug-in and that you
map to JavaScript objects. For information about Rhino, see the Mozilla Rhino Web site.

This chapter includes the following topics:

n Orchestrator Elements that Require Scripting

n Limitations of the Mozilla Rhino Implementation in Orchestrator

n Using the Orchestrator Scripting API

n Using XPath Expressions with the vCenter Server Plug-In

n Exception Handling Guidelines

n Orchestrator JavaScript Examples

Orchestrator Elements that Require Scripting

Not all Orchestrator elements require you to write scripts. To provide maximum flexibility to your
applications, you can customize certain elements by adding JavaScript functions.

You can add scripts in the following Orchestrator elements.

Actions

Actions are scripted functions. You can limit the scripting you write for an action to a single
operation, to maximize the potential for action reuse by other elements, such as other

VMware, Inc. 207

workflows. Alternatively, an action can contain many operations, to limit the complexity of
workflows, although this does reduce the capacity for reusing the action.

Policies

You set policies by using scripts that watch for trigger events. When the trigger events occur,
policies launch orchestration operations that you define in scripts.

Workflows

The Scriptable Task workflow element allows you to write a custom scripted operation or
sequence of operations that you can use in the workflows. You also define the Boolean
decision statement for custom decision elements in scripts that return either true or false.

Limitations of the Mozilla Rhino Implementation in
Orchestrator

Orchestrator uses the Mozilla Rhino 1.7R4 JavaScript engine. However, the implementation of
Rhino in Orchestrator presents some limitations.

When writing scripts for workflows, you must consider the following limitations of the Mozilla
Rhino implementation in Orchestrator.

n When a workflow runs, the objects that pass from one workflow element to another are not
JavaScript objects. What is passed from one element to the next is the serialization of a Java
object that has a JavaScript image. As a consequence, you cannot use the whole JavaScript
language, but only the classes that are present in the API Explorer. You cannot pass function
objects from one workflow element to another.

n Orchestrator runs the code in scriptable task elements in a context that is not the Rhino root
context. Orchestrator transparently wraps scriptable task elements and actions into
JavaScript functions, which it then runs. A scriptable task element that contains
System.log(this); does not display the global object this in the same way as a standard
Rhino implementation does.

n You can only call actions that return nonserializable objects from scripting, and not from
workflows. To call an action that returns a nonserializable object, you must write a scriptable
task element that calls the action by using the System.getModuleModuleName.action()
method.

n Workflow validation does not check whether a workflow attribute type is different from an
input type of an action or subworkflow. If you change the type of a workflow input
parameter, for example from VIM3:VirtualMachine to VC:VirtualMachine, but you do not
update any scriptable tasks or actions that use the original input type, the workflow validates
but does not run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 208

Using the Orchestrator Scripting API

The Orchestrator API exposes all of the objects and functions of the technologies, that
Orchestrator accesses through its plug-ins, as JavaScript objects and methods.

For example, you can access JavaScript implementations of the vCenter Server API through the
Orchestrator API, to include vCenter operations in scripted elements that you create. You can
also access JavaScript implementations of objects from all of the other plug-ins you install in the
Orchestrator server. If you create a custom plug-in to a third-party application, you map the
objects from its API to JavaScript objects that the Orchestrator API then exposes.

Procedure

1 Access the Scripting Engine from the Workflow Editor

The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you
write scripts for scripted elements in workflows. You access the scripting engine for scripted
workflow elements from the Scripting tab in the workflow editor.

2 Access the Scripting Engine from the Action or Policy Editor

The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write
scripts for actions or policies. You access the scripting engine for actions and policies from
the Scripting tabs in the action and policy editors.

3 Access the Orchestrator API Explorer

Orchestrator provides an API Explorer that you can use to search the Orchestrator API and
see the documentation for JavaScript objects that you can use in scripted elements.

4 Use the Orchestrator API Explorer to Find Objects

The Orchestrator API exposes the API of all plugged-in technologies, including the entire
vCenter Server API. The Orchestrator API Explorer helps you find the objects you need to
add to scripts.

5 Writing Scripts

The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions
and automatic completion of lines of scripting accelerates the scripting process and
minimizes the potential for writing errors in scripts.

6 Add Parameters to Scripts

The Orchestrator scripting engine helps you to import available parameters into scripts.

7 Accessing the Orchestrator Server File System from JavaScript and Workflows

Orchestrator limits access to the Orchestrator server file system from JavaScript and
Workflows to specific directories.

8 Accessing Java Classes from JavaScript

By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you
require JavaScript access to a wider range of Java classes, you must set an Orchestrator
system property to allow this access.

Developing with VMware vRealize Orchestrator

VMware, Inc. 209

9 Accessing Operating System Commands from JavaScript

The Orchestrator API provides a scripting class, Command, that runs commands in the
Orchestrator server host operating system. To prevent unauthorized access to the
Orchestrator server host, by default, Orchestrator applications do not have permission to
run the Command class.

Access the Scripting Engine from the Workflow Editor

The Orchestrator scripting engine uses the Mozilla Rhino 1.7R4 JavaScript engine to help you
write scripts for scripted elements in workflows. You access the scripting engine for scripted
workflow elements from the Scripting tab in the workflow editor.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Right-click a workflow in the Workflows view of the Orchestrator client and select Edit.

3 Click the Schema tab in the workflows editor.

4 Add a Scriptable Task element or a Custom Decision element to the workflow schema.

5 Click on the scriptable element's Scripting tab.

Results

You accessed the scripting engine to define the scripted functions of workflow elements. The
Scripting tab allows you to navigate through the API, consult documentation about the objects,
search for objects, and write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Access the Scripting Engine from the Action or Policy Editor

The Orchestrator scripting engine uses the Mozilla Rhino JavaScript engine to help you write
scripts for actions or policies. You access the scripting engine for actions and policies from the
Scripting tabs in the action and policy editors.

Procedure

1 Select an option from the drop-down menu in the Orchestrator client, depending on the type
of the element whose scripting you want to edit.

Option Description

Design Select this option to edit the scripting of an action element.

Run Select this option to edit the scripting of a policy.

2 Right-click an action or policy in the Actions or Policies views and select Edit.

3 Click the Scripting tab in the action or policy editor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 210

Results

You accessed the scripting engine to define the scripted functions of action or policy elements.
The Scripting tab allows you to navigate through the API, consult documentation about the
objects, search for objects, and write JavaScript.

What to do next

Search the Orchestrator API using the API Explorer.

Access the Orchestrator API Explorer

Orchestrator provides an API Explorer that you can use to search the Orchestrator API and see
the documentation for JavaScript objects that you can use in scripted elements.

You can consult an online version of the Scripting API for the vCenter Server plug-in on the
Orchestrator documentation home page.

Procedure

1 Log in to the Orchestrator client.

2 Select Tools > API Explorer.

Results

The API Explorer appears. You can use it to search all the objects and functions of the
Orchestrator API.

What to do next

Use the API Explorer to write scripts for scriptable elements.

Use the Orchestrator API Explorer to Find Objects

The Orchestrator API exposes the API of all plugged-in technologies, including the entire vCenter
Server API. The Orchestrator API Explorer helps you find the objects you need to add to scripts.

Prerequisites

Open the API Explorer.

Procedure

1 Enter the name or part of a name of an object in the API Explorer Search text box and click
Search.

To limit your search to a particular object type, uncheck or check the Scripting Class,
Attributes & Methods and Types & Enumerations check boxes.

2 Double-click the element in the proposed list.

The object is highlighted in the hierarchical list on the left. A documentation pane under the
hierarchical list presents information about the object.

Developing with VMware vRealize Orchestrator

VMware, Inc. 211

What to do next

Use the objects you find in scripts.

JavaScript Objects in the API Explorer

The Orchestrator API Explorer identifies and groups together the different kinds of JavaScript
objects in the hierarchical tree on the left of the Scripting tab or API Explorer dialog box. The API
Explorer uses icons to help you identify the different kinds of object.

The following table describes the objects of the Orchestrator API and shows their icon.

Table 2-1. JavaScript Objects in the Orchestrator API

Object Icon in Hierarchical List Description

Type Types

Function set Internal type that contains a set of
static methods

Primitive Primitive types

Object Standard Orchestrator scripting
objects

Attribute JavaScript attributes

Method JavaScript methods

Constructor JavaScript constructors

Enumeration JavaScript enumerations

String set String set, default values

Module A collection of actions

Plug-in Image that plug-in defines The APIs that plug-ins expose to
Orchestrator

Writing Scripts

The Orchestrator scripting engine helps you to write scripts. Automatic insertion of functions and
automatic completion of lines of scripting accelerates the scripting process and minimizes the
potential for writing errors in scripts.

Prerequisites

Open a scripted element for editing and click its Scripting tab.

Procedure

1 Navigate through the hierarchical list of objects on the left of the Scripting tab, or use the API
Explorer search function, to select a type, class, or method to add to the script.

Developing with VMware vRealize Orchestrator

VMware, Inc. 212

2 Right-click the type, class, or method and select Copy.

If the scripting engine does not allow you to copy the element you selected, this object is not
possible in the context of the script.

3 Right-click in the scripting pad, and paste the element you copied into the appropriate place
in the script.

The scripting engine enters the element into the script, complete with its constructor and an
instance name.

For example, if you copied the Date object, the scripting engine pastes the following code into
the script.

var myDate = new Date();

4 Copy and paste a method to add to the script.

The scripting engine completes the method call, adding the required attributes.

For example, if you copied the cloneVM() method from the com.vmware.library.vc.vm module,
the scripting engine pastes the following code into the script.

System.getModule("com.vmware.library.vc.vm").cloneVM(vm,folder,name,spec)

The scripting engine highlights those parameters that you already defined in the element.
Any undefined parameters remain unhighlighted.

5 Place the cursor at the end of an element you pasted into the script and press Ctrl+space to
select from a contextual list of possible methods and attributes that the object can call.

Note The automatic completion feature is currently experimental.

Results

You added object and functions to the script.

What to do next

Add parameters to the script.

Color Coding of Scripting Keywords

When you add scripts on the Scripting tab of a scripted workflow element, certain types of
keywords appear in different colors to enhance the readability of the code.

All scripting appears in standard black font unless stated otherwise.

Table 2-2. Color Coding of Scripting Keywords

Keyword Type Text Color in Scripting Tab

Standard JavaScript keywords, for example if, else, for,
and new

Bold black

Variable declarations, namely var Green

Developing with VMware vRealize Orchestrator

VMware, Inc. 213

Table 2-2. Color Coding of Scripting Keywords (continued)

Keyword Type Text Color in Scripting Tab

Modifiers in loops, for example in Red

Null variable values Purple

Non-null variable values Green

Code comments Italic gray

Orchestrator plug-in object types, for example
VC:VirtualMachine or VC:Host

Green

Output text Green

Workflow attributes Pink

Workflow inputs Pink

Workflow outputs Pink

Add Parameters to Scripts

The Orchestrator scripting engine helps you to import available parameters into scripts.

If you have already defined parameters for the element you are editing, they appear as links in
the Scripting tab toolbar.

Prerequisites

A scripted element is open for editing and its Scripting tab is open.

Procedure

1 Move the cursor to the appropriate position in a script in the scripting pad of the Scripting
tab.

2 Click the parameter link in the Scripting tab toolbar.

Orchestrator inserts the parameter at the position of the cursor.

3 Insert a parameter with a null value into the script.

If you pass null values to primitive types such as integers, Booleans, and Strings, the
Orchestrator scripting API automatically sets the default value for this argument.

Results

You added parameters to the script.

What to do next

Add access to Java classes in scripts.

Developing with VMware vRealize Orchestrator

VMware, Inc. 214

Accessing the Orchestrator Server File System from JavaScript and
Workflows

Orchestrator limits access to the Orchestrator server file system from JavaScript and Workflows
to specific directories.

JavaScript functions and workflows only have read, write, and execute permission in the
permanent directory c:\orchestrator.

The Orchestrator administrator can modify the folders to which JavaScript functions and
workflows have read, write, and execute access by setting a system property. See Installing and
Configuring VMware vRealize Orchestrator for information about setting system properties.

JavaScript functions and workflows also have read, write, and execute permission in the server
system default temporary I/O folder. Writing to the default temporary I/O folder is the only
portable, guaranteed, and configuration-independent means of accessing the file system with full
permissions. However, files that you write to the temporary I/O folder are lost when you reboot
the server.

You obtain the default temporary I/O folder by calling the System.getTempDirectory method in
JavaScript functions.

Access the Server File System Using the System.getTempDirectory Method

As an alternative to writing to the folders on the Orchestrator server system in which the
administrator has set the appropriate permissions, you can write to the default temporary I/O
folder.

Orchestrator has full read, write, and execute rights in the default temporary I/O folder by
default. You obtain the default temporary I/O folder by using the System.getTempDirectory method
in JavaScript functions

Procedure

u Include the following code line in JavaScript functions to access the java.io.temp-dir folder.

var tempDir = System.getTempDirectory()

Accessing Java Classes from JavaScript

By default, Orchestrator restricts JavaScript access to a limited set of Java classes. If you require
JavaScript access to a wider range of Java classes, you must set an Orchestrator system
property to allow this access.

By default, the Orchestrator JavaScript engine can access only the classes in the java.util.*
package.

The Orchestrator administrator can allow access to other Java classes from JavaScript functions
by setting a system property. See Installing and Configuring VMware vRealize Orchestrator for
information about setting system properties.

Developing with VMware vRealize Orchestrator

VMware, Inc. 215

Accessing Operating System Commands from JavaScript

The Orchestrator API provides a scripting class, Command, that runs commands in the Orchestrator
server host operating system. To prevent unauthorized access to the Orchestrator server host,
by default, Orchestrator applications do not have permission to run the Command class.

The Orchestrator administrator can allow access to the Command scripting class by setting the
com.vmware.js.allow-local-process=true system property.

For information about setting system properties, see the Installing and Configuring VMware
vCenter Orchestrator.

For information about setting system properties, see Installing and Configuring VMware vCenter
Orchestrator.

Using XPath Expressions with the vCenter Server Plug-In

You can use the finder methods in the vCenter Server plug-in to query for vCenter Server
inventory objects. You can use XPath expressions to define search parameters.

The vCenter Server plug-in includes a set of object finder methods such as getAllDatastores(),
getAllResourcePools(), findAllForType(). You can use these methods to access the inventories of
the vCenter Server instances that are connected to your Orchestrator server and search for
objects by ID, name, or other properties.

For performance reasons, the finder methods do not return any properties for the queried
objects, unless you specify a set of properties in the search query.

You can consult an online version of the Scripting API for the vCenter Server plug-in on the
Orchestrator documentation home page.

Important The queries based on XPath expressions might impact the Orchestrator performance
because the finder method returns all objects of a given type on the vCenter Server side and the
query filters are applied on the vCenter Server plug-in side.

Using XPath Expressions with the vCenter Server Plug-In

When you invoke a finder method, you can use expressions based on the XPath query language.
The search returns all the inventory objects that match the XPath expressions. If you want to
query for any properties, you can include them to the search script in the form of a string array.

The following JavaScript example uses the VcPlugin scripting object and an XPath expression to
return the names of all datastore objects that are part of the vCenter Server managed objects
and contain the string ds in their names.

var datastores = VcPlugin.getAllDatastores(null, "xpath:name[contains(.,'ds')]");

for each (datastore in datastores){

 System.log(datastore.name);

 }

Developing with VMware vRealize Orchestrator

VMware, Inc. 216

The same XPath expression can be invoked by using the Server scripting object and the
findAllForType finder method.

var datastores = Server.findAllForType("VC:Datastore", "xpath:name[contains(.,'ds')]");

for each (datastore in datastores){

 System.log(datastore.name);

 }

The following script example returns the names of all host system objects whose ID starts with
the digit 1.

var hosts = VcPlugin.getAllHostSystems(null, "xpath:id[starts-with(.,'1')]");

for each (host in hosts){

 System.log(host.name);

}

The following script returns the names and IDs of all data center objects that contain the string
DC, in upper- or lower-case letters, in their names. The script also retrieves the tag property.

var datacenters = VcPlugin.getAllDatacenters(['tag'], "xpath:name[contains(translate(., 'DC', 'dc'),

'dc')]");

for each (datacenter in datacenters){

 System.log(datacenter.name + “ ” + datacenter.id);

}

Exception Handling Guidelines

The Orchestrator implementation of the Mozilla Rhino JavaScript Engine supports exception
handling, to allow you to process errors. You must use the following guidelines when writing
exception handlers in scripts.

n Use the following European Computer Manufacturers Association (ECMA) error types. Use
Error as a generic exception that plug-in functions return, and the following specific error
types.

n TypeError

n RangeError

n EvalError

n ReferenceError

n URIError

n SyntaxError

The following example shows a URIError definition.

try {

 ...

 throw new URIError("VirtualMachine with ID 'vm-0056'

 not found on 'vcenter-test-1'") ;

Developing with VMware vRealize Orchestrator

VMware, Inc. 217

 ...

} catch (e if e instanceof URIError) {

}

n All exceptions that scripts do not catch must be simple string objects of the form
<type>:SPACE<human readable message>, as the following example shows.

throw "ValidationError: The input parameter 'myParam' of type 'string' is too short."

n Write human readable messages as clearly as possible.

n Simple string exception type checking must use the following pattern.

try {

 throw "VMwareNoSpaceLeftOnDatastore: Datastore 'myDatastore' has no space left" ;

} catch (e if (typeof(e)=="string" && e.indexOf("VMwareNoSpaceLeftOnDatastore:") == 0)) {

 System.log("No space left on device") ;

 // Do something useful here

}

n Simple string exception type checking, must use the following pattern in scripted elements in
workflows.

if (typeof(errorCode)=="string"

 && errorCode.indexOf("VMwareNoSpaceLeftOnDatastore:")

 == 0) {

 // Do something useful here

}

Orchestrator JavaScript Examples

You can cut, paste, and adapt the Orchestrator JavaScript examples to help you write
JavaScripts for common orchestration tasks.

n Basic Scripting Examples

Workflow scripted elements, actions, and policies require basic scripting of common tasks.
You can cut, paste, and adapt these examples into your scripted elements.

n Email Scripting Examples

Workflow scripted elements can include scripting of common email-related tasks. You can
cut, paste, and adapt these examples into your scripted elements.

n File System Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common file system
tasks. You can cut, paste, and adapt these examples into your scripted elements.

n LDAP Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common LDAP tasks.
You can cut, paste, and adapt these examples into your scripted elements.

Developing with VMware vRealize Orchestrator

VMware, Inc. 218

n Logging Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common logging tasks.
You can cut, paste, and adapt these examples into your scripted elements.

n Networking Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common networking
tasks. You can cut, paste, and adapt these examples into your scripted elements.

n Workflow Scripting Examples

Workflow scripted elements, actions, and policies require scripting examples of common
workflow tasks. You can cut, paste, and adapt these examples into your scripted elements.

Basic Scripting Examples

Workflow scripted elements, actions, and policies require basic scripting of common tasks. You
can cut, paste, and adapt these examples into your scripted elements.

Access XML Documents

The following JavaScript example allows you to access XML documents from JavaScript by using
the ECMAScript for XML (E4X) implementation in the Orchestrator JavaScript API.

Note In addition to implementing E4X in the JavaScript API, Orchestrator also provides a
Document Object Model (DOM) XML implementation in the XML plug-in. For information about
the XML plug-in and its sample workflows, see the Using vRealize Orchestrator Plug-Ins.

var people = <people>

 <person id="1">

 <name>Moe</name>

 </person>

 <person id="2">

 <name>Larry</name>

 </person>

 </people>;

System.log("'people' = " + people);

// built-in XML type

System.log("'people' is of type : " + typeof(people));

// list-like interface System.log("which contains a list of " +

people.person.length() + " persons");

System.log("whose first element is : " + people.person[0]);

// attribute 'id' is mapped to field '@id'

people.person[0].@id='47';

// change Moe's id to 47

// also supports search by constraints

System.log("Moe's id is now : " + people.person.(name=='Moe').@id);

// suppress Moe from the list

Developing with VMware vRealize Orchestrator

VMware, Inc. 219

delete people.person[0];

System.log("Moe is now removed.");

// new (sub-)document can be built from a string

people.person[1] = new XML("<person id=\"3\"><name>James</name></person>");

System.log("Added James to the list, which is now :");

for each(var person in people..person)

for each(var person in people..person){

 System.log("- " + person.name + " (id=" + person.@id + ")");

}

Setting and Obtaining Properties from a Hashtable

The following JavaScript example sets properties in a hashtable and obtains the properties from
the hashtable. In the following example, the key is always a String and the value is an object, a
number, a Boolean, or a String.

var table = new Properties() ;

table.put("myKey",new Date()) ;

// get the object back

var myDate= table.get("myKey") ;

System.log("Date is : "+myDate) ;

Replace the Contents of a String

The following JavaScript example replaces the content of a String and replaces it with new
content.

var str1 = "'hello'" ;

var reg = new RegExp("(')", "g");

var str2 = str1.replace(reg,"\\'") ;

System.log(""+str2) ; // result : \'hello\'

Compare Types

The following JavaScript example checks whether an object matches a given object type.

var path = 'myurl/test';

if(typeof(path, string)){

 throw("string");

else {

 throw("other");

}

Developing with VMware vRealize Orchestrator

VMware, Inc. 220

Run a Command in the Orchestrator Server

The following JavaScript example allows you to run a command line on the Orchestrator server.
Use the same credentials as those used to start the server.

Note Access to the file system is limited by default.

var cmd = new Command("ls -al") ;

cmd.execute(true) ;

System.log(cmd.output) ;

Email Scripting Examples

Workflow scripted elements can include scripting of common email-related tasks. You can cut,
paste, and adapt these examples into your scripted elements.

When you run a mail workflow, it uses the default mail server configuration that you set in the
Configure mail workflow. You can override the default values by using input parameters, or by
defining custom values in workflow scripted elements.

Obtain an Email Address

The following JavaScript example obtains the email address of the current owner of a running
script.

var emailAddress = Server.getRunningUser().emailAddress ;

Send an Email

The following JavaScript example sends an email to the defined recipient, through an SMTP
server, with the defined content.

var message = new EmailMessage() ;

message.smtpHost = "smtpHost" ;

message.subject= "my subject" ;

message.toAddress = "receiver@vmware.com" ;

message.fromAddress = "sender@vmware.com" ;

message.addMimePart("This is a simple message","text/html") ;

message.sendMessage() ;

Retrieve Email Messages

The following JavaScript example retrieves the messages of an email account, without deleting
them, by using the scripting API provided by the MailClient class.

var myMailClient = new MailClient();

myMailClient.setProtocol(mailProtocol);

if(useSSL){

 myMailClient.enableSSL();

}

Developing with VMware vRealize Orchestrator

VMware, Inc. 221

myMailClient.connect(mailServer, mailPort, mailUsername, mailPassword);

System.log("Successfully login!");

try {

 myMailClient.openFolder("Inbox");

 var messages = myMailClient.getMessages();

 System.log("Reading messages...!");

 if (messages != null && messages.length > 0) {

 System.log("You have " + messages.length + " email(s) in your inbox");

 for (i = 0; i < messages.length; i++) {

 System.log("");

 System.log("-----MSG-------");

 System.log("Headers: ");

 var headerProp = messages[i].getHeaders();

 for each(key in headerProp.keys){

 System.log(key+": "+headerProp.get(key));

 }

 System.log("");

 System.log("Message["+ i +"] with from: " + messages[i].from + " to: " + messages[i].to);

 System.log("Message["+ i +"] with subject: " + messages[i].subject);

 var content = messages[i].getContent();

 System.log("Msg content as string: " + content);

 }

 } else {

 System.warn("No messages found");

 }

} finally {

 myMailClient.closeFolder();

 myMailClient.close();

}

File System Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common file system tasks.
You can cut, paste, and adapt these examples into your scripted elements.

Add Content to a Simple Text File

The following JavaScript example adds content to a text file.

var tempDir = System.getTempDirectory() ;

var fileWriter = new FileWriter(tempDir + "/readme.txt") ;

fileWriter.open() ;

fileWriter.writeLine("File written at : "+new Date()) ;

fileWriter.writeLine("Another line") ;

fileWriter.close() ;

Developing with VMware vRealize Orchestrator

VMware, Inc. 222

Obtain the Contents of a File

The following JavaScript example obtains the contents of a file from the Orchestrator server host
machine.

var tempDir = System.getTempDirectory() ;

var fileReader = new FileReader(tempDir + "/readme.txt") ;

fileReader.open() ;

var fileContentAsString = fileReader.readAll();

fileReader.close() ;

LDAP Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common LDAP tasks. You
can cut, paste, and adapt these examples into your scripted elements.

Convert LDAP Objects to Active Directory Objects

The following JavaScript example converts LDAP group elements to Active Directory user group
objects, and the reverse.

var ldapGroup ;

// convert from ldap element to Microsoft:UserGroup object

var adGroup = ActiveDirectory.search("UserGroup",ldapGroup.commonName) ;

// convert back to LdapGroup element

var ldapElement = Server.getLdapElement(adGroup.distinguishedName) ;

Logging Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common logging tasks. You
can cut, paste, and adapt these examples into your scripted elements.

Persistent Logging

The following JavaScript example creates persistent log entries.

Server.log("This is a persistant message", "enter a long description here");

Server.warn("This is a persistant warning", "enter a long description here");

Server.error("This is a persistant error", "enter a long description here");

Non-Persistent Logging

The following JavaScript example creates non-persistent log entries.

System.log("This is a non-persistant log message");

System.warn("This is a non-persistant log warning");

System.error("This is a non-persistant log error");

Developing with VMware vRealize Orchestrator

VMware, Inc. 223

Networking Scripting Examples

Workflow scripted elements, actions, and policies require scripting of common networking tasks.
You can cut, paste, and adapt these examples into your scripted elements.

Obtain Text from a URL

The following JavaScript example accesses a URL, obtains text, and converts it to a string.

var url = new URL("http://www.vmware.com") ;

var htmlContentAsString = url.getContent() ;

Workflow Scripting Examples

Workflow scripted elements, actions, and policies require scripting examples of common
workflow tasks. You can cut, paste, and adapt these examples into your scripted elements.

Return All Workflows Run by the Current User

The following JavaScript example obtains all workflow runs from the server and checks whether
they belong to the current user.

var allTokens = Server.findAllForType('WorkflowToken');

var currentUser = Server.getCredential().username;

var res = [];

for(var i = 0; i<res.length; i++){

 if(allTokens[i].runningUserName == currentUser){

 res.push(allTokens[i]);

 }

}

return res;

Access the Current Workflow Token

You can access the current workflow token by using the workflow variable. It is an object of type
WorkflowToken that provides access to the current workflow run. The following JavaScript
example gets the ID of the workflow token and its start date.

System.log("Current workflow run ID: " + workflow.id);

System.log("Current workflow run start date: "+workflow.startDate);

Schedule a Workflow

The following JavaScript example starts a workflow with a given set of properties, and then
schedules it to start one hour later.

var workflowToLaunch = myWorkflow ;

// create parameters

var workflowParameters = new Properties() ;

workflowParameters.put("name","John Doe") ;

// change the task name

Developing with VMware vRealize Orchestrator

VMware, Inc. 224

workflowParameters.put("__taskName","Workflow for John Doe") ;

// create scheduling date one hour in the future

var workflowScheduleDate = new Date() ;

var time = workflowScheduleDate.getTime() + (60*60*1000) ;

workflowScheduleDate.setTime(time) ; var scheduledTask =

workflowToLaunch.schedule(workflowParameters,workflowScheduleDate);

Run a Workflow on a Selection of Objects in a Loop

The following JavaScript example takes the array of virtual machines and runs a workflow on
each one in a For loop. VMs and workflowToRun are workflow inputs.

var len=VMs.length;

for (var i=0; i < len; i++)

{

 var VM = VMs[i];

 //var workflowToLaunch = Server.getWorkflowWithId("workflowId");

 var workflowToLaunch = workflowToRun;

 if (workflowToLaunch == null) {

 throw "Workflow not found";

 }

var workflowParameters = new Properties();

workflowParameters.put("vm",VM);

var wfToken = workflowToLaunch.execute(workflowParameters);

System.log ("Ran workflow on " +VM.name);

}

Developing with VMware vRealize Orchestrator

VMware, Inc. 225

Developing Actions 3
Orchestrator provides libraries of predefined actions. Actions represent individual functions that
you use as building blocks in workflows and scripts.

Actions are JavaScript functions. They take multiple input parameters and have a single return
value. They can call on any object in the Orchestrator API, or on objects in any API that you
import into Orchestrator by using a plug-in.

When a workflow runs, an action takes input parameters from the workflow's attributes. These
attributes can be either the workflow's initial input parameters, or attributes that other elements
in the workflow set when they run.

This chapter includes the following topics:

n Reusing Actions

n Access the Actions View

n Components of the Actions View

n Creating Actions

n Use Action Version History

n Restore Deleted Actions

Reusing Actions

When you define an individual function as an action instead of coding it directly into a scriptable
task workflow element, you expose it in the library. When an action is visible in the library, other
workflows can use it.

When you define actions independently from the workflows that call on them, you can update or
optimize the actions more easily. Defining individual actions also allows other workflows to reuse
actions. When a workflow runs, Orchestrator caches each action only the first time that the
workflow runs it. Orchestrator can then reuse the cached action. Caching actions is useful for
recursive calls in a workflow, or fast loops.

You can duplicate actions, export them to other workflows or packages, or move them to a
different module in the actions hierarchical list.

VMware, Inc. 226

Access the Actions View

The Orchestrator client interface features an Actions view that provides access to the
Orchestrator server's libraries of actions.

The Actions view of the Orchestrator client interface presents you with a hierarchical list of all the
actions available in the Orchestrator server.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Browse the libraries of actions by expanding the nodes of the actions hierarchical list.

Results

You can use the Actions view to view information about the actions in the libraries and create
and edit actions.

Components of the Actions View

When you click an action in the actions hierarchical list, information about that action appears in
the Orchestrator client's right pane.

The Actions view presents three tabs.

General

Displays general information about the action, including its name, its version number, and a
description.

Scripting

Shows the action's return types, input parameters, and the JavaScript code that defines the
action's function.

Events

Shows all the events that this action encountered or triggered.

Creating Actions

You can define individual functions as actions that other elements, such as workflows, can use.
Actions are JavaScript functions with defined input and output parameters.

n Create an Action

When you define an individual function as an action, instead of coding it directly into a
scriptable task workflow element, you can expose it in the library for other workflows to use.

Developing with VMware vRealize Orchestrator

VMware, Inc. 227

n Find Elements That Implement an Action

If you edit an action and change its behavior, you might inadvertently break a workflow or
application that implements that action. Orchestrator provides a function to find all of the
actions, workflows, or packages that implement a given element. You can check whether
modifying the element affects the operation of other elements.

n Action Coding Guidelines

To optimize the performance of workflows and to maximize the potential to reuse actions,
you should follow some basic coding guidelines when creating actions.

Create an Action

When you define an individual function as an action, instead of coding it directly into a scriptable
task workflow element, you can expose it in the library for other workflows to use.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the root of the actions hierarchical list and navigate to the module in which you want
to create the action.

4 Right-click the module and select Add action.

5 Enter a name for the action in the text box and click OK.

Your custom action is added to the library of actions.

6 Right-click the action and select Edit.

7 Click the Scripting tab.

8 To change the default return type, click the void link.

9 Add the action input parameters by clicking the arrow icon.

10 Write the action script.

11 Click Save and close.

Results

You created a custom action and added the action input parameters.

What to do next

You can use the new custom action in a workflow.

Find Elements That Implement an Action

If you edit an action and change its behavior, you might inadvertently break a workflow or
application that implements that action. Orchestrator provides a function to find all of the actions,

Developing with VMware vRealize Orchestrator

VMware, Inc. 228

workflows, or packages that implement a given element. You can check whether modifying the
element affects the operation of other elements.

Important The Find Elements that Use this Element function checks all packages, workflows,
and policies, but it does not check in scripts. Consequently, modifying an action might affect an
element that calls this action in a script that the Find Elements that Use this Element function did
not identify.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Expand the nodes of the actions hierarchical list to navigate to a given action.

4 Right-click the action and select Find Elements that Use this Element.

A dialog box shows all of the elements, such as workflows or packages, that implement this
action.

5 Double-click an element in the list of results to show that element in the Orchestrator client.

Results

You located all of the elements that implement an action.

What to do next

You can check whether modifying this element affects any other elements.

Action Coding Guidelines

To optimize the performance of workflows and to maximize the potential to reuse actions, you
should follow some basic coding guidelines when creating actions.

Basic Action Guidelines

When you create an action, you must use basic guidelines.

n Every action must include a description of its role and function.

n Write short, elementary actions and combine them in a workflow.

n Avoid writing actions that perform multiple functions, because this limits the potential for
reusing the action.

n Avoid actions that run for long periods of time. Instead, create a loop in the workflow and
include a Waiting Event or Waiting Timer element after the action element.

n Do not write check points in actions. Workflows set a check point at the start and end of each
element's run.

Developing with VMware vRealize Orchestrator

VMware, Inc. 229

n Avoid writing loops in an action. Create loops in the workflow instead. If the server restarts, a
running workflow resumes at its last check point, at the start of an element. If you write a
loop inside an action and the server restarts while the workflow is running that action, the
workflow resumes at the check point at the beginning of that action, and the loop starts again
from the beginning.

Action Naming Guidelines

Use basic guidelines when you name actions.

n Write action names in English.

n Start action names with a lowercase letter. Use an uppercase letter at the beginning of each
conjoined word in the name. For example, myAction.

n Make action names as explicit as possible, so that the function of the action is clear. For
example, backupAllVMsInPool.

n Make module names as explicit as possible.

n Make module names unique.

n Use the inverse Internet address format for module names. For example,
com.vmware.myactions.myAction.

Action Parameter Guidelines

Use basic guidelines when you write action parameter definitions.

n Write parameter names in English.

n Start parameter names with a lowercase letter.

n Make parameter names as explicit as possible.

n Preferably limit parameter names to a single word. If a name must contain more than one
word, use an uppercase letter at the beginning of each conjoined word in the name. For
example, myParameter.

n Use the plural form for parameters that represent an array of objects.

n Make variable names unambiguous, for example, displayName.

n Include a description for each parameter to describe its purpose.

n Do not use an excessive number of parameters in a single action.

Use Action Version History

You can use version history to revert an action to a previous version. You can revert the action
state to an earlier or a later action version. You can also compare the differences between the
current state of the action and a saved version of the action.

Developing with VMware vRealize Orchestrator

VMware, Inc. 230

Orchestrator creates a new version history item for each action when you increase and save the
action version. Subsequent changes to the action do not change the current version item. For
example, when you create action version 1.0.0 and save it, the state of the action is stored in the
database. If you make any changes to the action, you can save the action state in the
Orchestrator client, but you cannot apply the changes to action version 1.0.0. To store the
changes in the database, you must create a subsequent action version and save it. The version
history is kept in the database along with the action itself.

When you delete an action, Orchestrator marks the element as deleted in the database without
deleting the version history of the element from the database. This way, you can restore deleted
actions. See Restore Deleted Actions.

Prerequisites

Open an action for editing.

Procedure

1 Click the General tab in the action editor.

2 Click Show version history.

A version history window appears.

3 Select an action version and click Diff Against Current to compare the differences.

A window that displays the differences between the current action version and the selected
action version appears.

4 Select an action version and click Revert to restore the state of the action.

Caution If you have not saved the current action version, it is deleted from the version
history and you cannot revert back to the current version.

The action state is reverted to the state of the selected version.

Restore Deleted Actions

You can restore actions that have been deleted from the library.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Actions view.

3 Navigate to the folder in which you want to restore a deleted action or actions.

4 Right-click the folder and select Restore deleted actions.

5 Select the action or actions that you want to restore and click Restore.

Developing with VMware vRealize Orchestrator

VMware, Inc. 231

Results

The action or actions appear in the selected folder.

Developing with VMware vRealize Orchestrator

VMware, Inc. 232

Creating Resource Elements 4
Workflows might require objects that you create independently of Orchestrator to be used as
attributes. To use external objects as attributes in workflows, you import them into the
Orchestrator server as resource elements.

Objects that workflows can use as resource elements include image files, scripts, XML templates,
HTML files, and so on. Any workflows that run in the Orchestrator server can use any resource
elements that you import into Orchestrator.

Importing an object into Orchestrator as a resource element lets you make changes to the object
in a single location, and to propagate those changes automatically to all the workflows that use
this resource element.

You can organize resource elements into folders. The maximum size for a resource element is
16MB.

This chapter includes the following topics:

n View a Resource Element

n Import an External Object to Use as a Resource Element

n Edit the Resource Element Information

n Save a Resource Element to a File

n Update a Resource Element

n Add a Resource Element to a Workflow

View a Resource Element

You can view existing resource elements in the Orchestrator client, to examine their contents and
discover which workflows use this resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Expand the hierarchical tree viewer to navigate to a resource element.

VMware, Inc. 233

4 Click a resource element to show information about it in the right pane.

5 Click the Viewer tab to display the contents of the resource element.

6 Right-click the resource element and select Find Elements that Use this Element.

Orchestrator lists all the workflows that use this resource element.

What to do next

Import and edit a resource element.

Import an External Object to Use as a Resource Element

Workflows can require objects that you create independently of Orchestrator to be used as
attributes. To use external objects as attributes in workflows, you must import them to the
Orchestrator server as resource elements.

Prerequisites

Verify that you have an image file, script, XML template, HTML file, or other type of object to
import.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click a resource folder in the hierarchical list or the root and select New folder to create
a folder in which to store the resource element.

4 Right-click the resource folder in which to import the resource element and select Import
resources.

5 Select the resource to import and click Open.

Orchestrator adds the resource element to the folder you selected.

Results

You imported a resource element into the Orchestrator server.

What to do next

Edit the general information of the resource element.

Edit the Resource Element Information

After you import an object into the Orchestrator server as a resource element, you can edit the
resource element's details.

Developing with VMware vRealize Orchestrator

VMware, Inc. 234

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object
into Orchestrator as a resource element.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click the resource element and select Edit.

4 Click the General tab and set the resource element name, version, and description.

5 (Optional) To see a preview of imported image resource elements, click the Viewer tab.

6 Click Save and close to exit the editor.

Results

You edited the general information about the resource element.

What to do next

Save the resource element to a file to update it, or add the resource element to a workflow.

Save a Resource Element to a File

You can save a resource element to a file on your local system. Saving the resource element as a
file allows you to edit it.

You cannot edit a resource element in the Orchestrator client. For example, if the resource
element is an XML configuration file or a script, you must save it locally to modify it.

Prerequisites

Verify that the Orchestrator server contains a resource element that you can save to a file.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Resources view.

3 Right-click the resource element and select Save to file.

4 Make the required modifications to the file.

Results

You saved a resource element to a file.

What to do next

Update the resource element in the Orchestrator server.

Developing with VMware vRealize Orchestrator

VMware, Inc. 235

Update a Resource Element

If you want to update a resource element, you must export it to the file system, edit the exported
file with an appropriate tool, and update the resource element by importing the edited file.

Prerequisites

Verify that you have imported an image, script, XML, or HTML file, or any other type of object
into Orchestrator as a resource element.

Procedure

1 Modify the source file of the resource element in your local system.

2 From the drop-down menu in the Orchestrator client, select Design.

3 Click the Resources view.

4 Navigate through the hierarchical list to the resource element that you have updated.

5 Right-click the resource element and select Update resource.

6 (Optional) Click the Viewer tab to verify that Orchestrator has updated the resource element.

Results

You updated a resource element that the Orchestrator server contains.

Add a Resource Element to a Workflow

Resource elements are external objects that you can import to the Orchestrator server for
workflows to use as attributes when they run. For example, a workflow can use an imported XML
file that defines a map to convert one type of data to another, or a script that defines a function,
when it runs.

Prerequisites

Verify that you have the following objects in your Orchestrator server:

n An image, script, XML, or HTML file, or any other type of object imported into Orchestrator as
a resource element.

n A workflow that requires the resource element as an attribute.

Procedure

1 From the drop-down menu in the Orchestrator client, select Design.

2 Click the Workflows view.

3 Expand the hierarchical tree viewer to navigate to the workflow that requires the resource
element as an attribute.

4 Right-click the workflow and select Edit.

Developing with VMware vRealize Orchestrator

VMware, Inc. 236

5 On the General tab, in the Attributes pane, click the Add attribute icon ().

6 Click the attribute name and type a new name for the attribute.

7 Click Type to set the attribute type.

8 In the Select a type dialog box, type resource in the Filter box to search for an object type.

Option Action

Define a single resource element as
an attribute

Select ResourceElement from the list.

Define a folder that contains
multiple resource elements as an
attribute

Select ResourceElementCategory from the list.

9 Click Value and type the name of the resource element or category of resource elements in

the Filter text box.

10 From the proposed list, select the resource element or a folder containing resource elements
and click Select.

11 Click Save and close to exit the editor.

Results

You added a resource element or folder of resource elements as an attribute in a workflow.

Developing with VMware vRealize Orchestrator

VMware, Inc. 237

Creating Packages 5
Packages are used for distributing content from one Orchestrator server to another. Packages
can contain workflows, actions, policy templates, configurations, or resources.

When you add an element to a package, Orchestrator checks for dependencies and adds any
dependent elements to the package. For example, if you add a workflow that uses actions or
other workflows, Orchestrator adds those actions and workflows to the package.

When you import a package, the server compares the versions of the different elements of its
contents to matching local elements. The comparison shows the differences in versions between
the local and imported elements. The administrator can decide whether to import the package, or
can select specific elements to import.

Packages use digital rights management to control how the receiving server can use the contents
of the package. Orchestrator signs packages and encrypts the packages for data protection.
Packages can track which users export and redistribute elements by using X509 certificates.

For more information about using packages, see Using the VMware vRealize Orchestrator Client.

n Create a Package

You can export workflows, policy templates, actions, plug-in references, resources, and
configuration elements in packages. All elements that an element in a package implements
are added to the package automatically, to ensure compatibility between versions. If you do
not want to add the referenced elements, you can delete them in the package editor.

Create a Package

You can export workflows, policy templates, actions, plug-in references, resources, and
configuration elements in packages. All elements that an element in a package implements are
added to the package automatically, to ensure compatibility between versions. If you do not
want to add the referenced elements, you can delete them in the package editor.

Prerequisites

Verify that the Orchestrator server contains elements such as workflows, actions, and policy
templates that you can add to a package.

VMware, Inc. 238

Procedure

1 From the drop-down menu in the Orchestrator Legacy Client, select Administer.

2 Click the Packages view.

3 Right-click in the left pane and select Add package.

4 Type the name of the new package and click Ok.

The syntax for package names is domain.your_company.folder.package_name.

For example, com.vmware.myfolder.mypackage.

5 Right-click the package and select Edit.

The package editor opens.

6 On the General tab, add a description for the package.

7 On the Workflows tab, add workflows to the package.

n To search for and select workflows in a selection dialog box, click Insert Workflows (list
search).

n To browse and select folders of workflows from the hierarchical list, click Insert
Workflows (tree browsing).

8 On the Policy Templates, Actions, Configurations, Resources, and Used Plug-Ins tabs, add
policy templates, actions, configuration elements, resource elements, and plug-ins to the
package.

9 To exit the editor, click Save and close.

Results

You created a package and added elements to it.

Developing with VMware vRealize Orchestrator

VMware, Inc. 239

Developing Plug-Ins 6
Orchestrator allows integration with management and administration solutions through its open
plug-in architecture. You use the Orchestrator client to run and create plug-in workflows and
access the plug-in API.

This chapter includes the following topics:

n Overview of Plug-Ins

n Contents and Structure of a Plug-In

n Orchestrator Plug-In API Reference

n Elements of the vso.xml Plug-In Definition File

n Best Practices for Orchestrator Plug-In Development

Overview of Plug-Ins

Orchestrator plug-ins must include a standard set of components and must adhere to a standard
architecture. These practices help you to create plug-ins for the widest possible variety of
external technologies.

n Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

n Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an
Orchestrator plug-in. You can create a plug-in for any technology that exposes an API that
you can map into JavaScript objects that Orchestrator can use.

n Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the
plugged-in technology to the Orchestrator platform.

VMware, Inc. 240

n Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the
plugged-in technology to Orchestrator inventory objects, scripting types, scripting classes,
scripting methods, and attributes. The vso.xml file also defines the configuration and start-
up behavior of the plug-in.

n Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in
adapter serves as the datastore for the plugged-in technology in the Orchestrator server,
creates the plug-in factory, and manages events that occur in the plugged-in technology.

n Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

n Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the
plugged-in technology. Orchestrator can modify and interact with objects that it finds in the
plugged-in technology by running workflows on the finder objects.

n Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology.
Scripting objects from plug-ins appear in the Orchestrator Javascript API and you can use
them in scripted elements in workflows and actions.

n Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the
plugged-in technology. Orchestrator monitors events by implementing event handlers.

Structure of an Orchestrator Plug-In

Orchestrator plug-ins have a common structure that consists of various types of layers that
implement specific functionality.

The bottom three layers of a Orchestrator plug-in, which are the infrastructure classes, wrapping
classes, and scripting objects, implement the connection between the plugged-in technology and
Orchestrator.

The user-visible parts of a Orchestrator plug-in are the top three layers, which are actions,
building blocks, and high-level workflows.

Developing with VMware vRealize Orchestrator

VMware, Inc. 241

Figure 6-1. Structure of an Orchestrator Plug-In

High level workflow

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

Infrastructure classes

A set of classes that provide the connection between the plugged-in technology and
Orchestrator. The infrastructure classes include the classes to implement according to the
plug-in definition, such as plug-in factory, plug-in adaptor, and so on. The infrastructure
classes also include the classes that provide functionality for common tasks and objects such
as helpers, caching, inventory, and so on.

Wrapping classes

A set of classes that adapt the object model of the plugged-in technology to the object
model that you want to expose inside Orchestrator.

Scripting objects

JavaScript object types that provide access to the wrapping classes, methods, and attributes
in the plugged-in technology. In the vso.xml file, you define which wrapping classes,
attributes, and methods from the plugged-in technology will be exposed to Orchestrator.

Actions

A set of JavaScript functions that you can use directly in workflows and scripting tasks.
Actions can take multiple input parameters and have a single return value.

Building block workflows

A set of workflows that cover all generic functionality that you want to provide with the plug-
in. Typically, a building block workflow represents an operation in the user interface of the
orchestrated technology. The building block workflows can be used directly or can be
included inside high-level workflows.

High-level workflows

Developing with VMware vRealize Orchestrator

VMware, Inc. 242

A set of workflows that cover specific functionality of the plug-in. You can provide high-level
workflows to meet concrete requirements or to show complex examples of the plug-in usage.

Exposing an External API to Orchestrator

You expose an API from an external product to the Orchestrator platform by creating an
Orchestrator plug-in. You can create a plug-in for any technology that exposes an API that you
can map into JavaScript objects that Orchestrator can use.

Plug-ins map Java objects and methods to JavaScript objects that they add to the Orchestrator
scripting API. If an external technology exposes a Java API, you can map the API directly to
JavaScript for Orchestrator to use in workflows and actions.

You can create plug-ins for applications that expose an API in a language other than Java by
using WSDL (Web service definition language), REST (Representational state transfer), or a
messaging service to integrate the exposed API with Java objects. You then map the integrated
Java objects to JavaScript for Orchestrator to use.

The plugged-in technology is independent from Orchestrator. You can create Orchestrator plug-
ins for external products even if you only have access to binary code, for example in Java
archives (JAR files), rather than source code.

Components of a Plug-In

Plug-ins are composed of a standard set of components that expose the objects in the plugged-
in technology to the Orchestrator platform.

The main components of a plug-in are the plug-in adapter, factory, and event implementations.
You map the objects and operations defined in the adapter, factory, and event implementations
to Orchestrator objects in an XML definition file named vso.xml. The vso.xml file maps objects
and functions from the plugged in technology to JavaScript scripting objects that appear in the
Orchestrator JavaScript API. The vso.xml file also maps object types from the plugged-in
technology to finders, that appear in the Orchestrator Inventory tab.

Plug-ins are composed of the following components.

Plug-In Module

The plug-in itself, as defined by a set of Java classes, a vso.xml file, and packages of the
workflows and actions that interact with the objects that you access through the plug-in. The
plug-in module is mandatory.

Plug-In Adapter

Defines the interface between the plugged-in technology and the Orchestrator server. The
adapter is the entry point of the plug-in to the Orchestrator platform. The adapter creates the
plug-in factory, manages the loading and unloading of the plug-in, and manages the events
that occur on the objects in the plugged-in technology. The plug-in adapter is mandatory.

Plug-In Factory

Developing with VMware vRealize Orchestrator

VMware, Inc. 243

Defines how Orchestrator finds objects in the plugged-in technology and performs
operations on them. The adapter creates a factory for the client session that opens between
Orchestrator and a plugged-in technology. The factory allows you either to share a session
between all client connections or to open one session per client connection. The plug-in
factory is mandatory.

Configuration

Orchestrator does not define a standard way for the plug-in to store its configuration. You
can store configuration information by using Windows Registries, static configuration files,
storing information in a database, or in XML files. Orchestrator plug-ins can be configured by
running configuration workflows in the Orchestrator client.

Finders

Interaction rules that define how Orchestrator locates and represents the objects in the
plugged-in technology. Finders retrieve objects from the set of objects that the plugged-in
technology exposes to Orchestrator. You define in the vso.xml file the relations between
objects to allow you to navigate through the network of objects. Orchestrator represents the
object model of the plugged-in technology in the Inventory tab. Finders are mandatory if you
want to expose objects in the plugged-in technology to Orchestrator.

Scripting Objects

JavaScript object types that provide access to the objects, operations, and attributes in the
plugged-in technology. Scripting objects define how Orchestrator accesses the object model
of the plugged-in technology through JavaScript. You map the classes and methods of the
plugged-in technology to JavaScript objects in the vso.xml file. You can access the
JavaScript objects in the Orchestrator scripting API and integrate them into Orchestrator
scripted tasks, actions, and workflows. Scripting objects are mandatory if you want to add
scripting types, classes, and methods to the Orchestrator JavaScript API.

Inventory

Instances of objects in the plugged-in technology that Orchestrator locates by using finders
appear in the Inventory view in the Orchestrator client. You can perform operations on the
objects in the inventory by running workflows on them. The inventory is optional. You can
create a plug-in that only adds scripting types and classes to the Orchestrator JavaScript API
and does not expose any instances of objects in the inventory.

Events

Changes in the state of an object in the plugged-in technology. Orchestrator can listen
passively for events that occur in the plugged-in technology. Orchestrator can also actively
trigger events in the plugged-in technology. Events are optional.

Developing with VMware vRealize Orchestrator

VMware, Inc. 244

Role of the vso.xml File

You use the vso.xml file to map the objects, classes, methods, and attributes of the plugged-in
technology to Orchestrator inventory objects, scripting types, scripting classes, scripting
methods, and attributes. The vso.xml file also defines the configuration and start-up behavior of
the plug-in.

The vso.xml file performs the following principal roles.

Start-Up and Configuration Behavior

Defines the manner in which the plug-in starts and locates any configuration implementations
that the plug-in defines. Loads the plug-in adapter.

Inventory Objects

Defines the types of objects that the plug-in accesses in the plugged-in technology. The
finder methods of the plug-in factory implementation locate instances of these objects and
display them in the Orchestrator inventory.

Scripting Types

Adds scripting types to the Orchestrator JavaScript API to represent the different types of
object in the inventory. You can use these scripting types as input parameters in workflows.

Scripting Classes

Adds classes to the Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Scripting Methods

Adds methods to the Orchestrator JavaScript API that you can use in scripted elements in
workflows, actions, policies, and so on.

Scripting Attributes

Adds the attributes of the objects in the plugged-in technology to the Orchestrator
JavaScript API that you can use in scripted elements in workflows, actions, policies, and so
on.

Roles of the Plug-In Adapter

The plug-in adapter is the entry point of the plug-in to the Orchestrator server. The plug-in
adapter serves as the datastore for the plugged-in technology in the Orchestrator server, creates
the plug-in factory, and manages events that occur in the plugged-in technology.

To create a plug-in adapter, you create a Java class that implements the IPluginAdaptor interface.

The plug-in adapter class that you create manages the plug-in factory, events, and triggers in the
plugged-in technology. The IPluginAdaptor interface provides methods that you use to perform
these tasks.

Developing with VMware vRealize Orchestrator

VMware, Inc. 245

The plug-in adapter performs the following principal roles.

Creates a factory

The most important role of the plug-in adapter is to load and unload one plug-in factory
instance for every connection from Orchestrator to the plugged-in technology. The plug-in
adapter class calls the IPluginAdaptor.createPluginFactory() method to create an instance of
a class that implements the IPluginFactory interface.

Manages events

The plug-in adapter is the interface between the Orchestrator server and the plugged-in
technology. The plug-in adapter manages the events that Orchestrator performs or watches
for on the objects in the plugged-in technology. The adapter manages events through event
publishers. Event publishers are instances of the IPluginEventPublisher interface that the
adapter creates by calling the IPluginAdaptor.registerEventPublisher() method. Event
publishers set triggers and gauges on objects in the plugged-in technology, to allow
Orchestrator to launch defined actions if certain events occur on the object, or if the object's
values pass certain thresholds. Similarly, you can define PluginTrigger and PluginWatcher
instances that define events that Wait Event elements in long-running workflows await.

Sets the plug-in name

You provide a name for the plug-in in the vso.xml file. The plug-in adapter gets this name
from the vso.xml file and publishes it in the Orchestrator client Inventory view.

Installs licenses

You can call methods to install any license files that the plugged-in technology requires in the
adapter implement.

For full details of the IPluginAdaptor interface, all of its methods, and all of the other classes of
the plug-in API, see Orchestrator Plug-In API Reference.

Roles of the Plug-In Factory

The plug-in factory defines how Orchestrator finds objects in the plugged-in technology and
performs operations on the objects.

To create the plug-in factory, you must implement and extend the IPluginFactory interface from
the Orchestrator plug-in API. The plug-in factory class that you create defines the finder
functions that Orchestrator uses to access objects in the plugged-in technology. The factory
allows the Orchestrator server to find objects by their ID, by their relation to other objects, or by
searching for a query string.

The plug-in factory performs the following principal tasks.

Finds objects

Developing with VMware vRealize Orchestrator

VMware, Inc. 246

You can create functions that find objects according to their name and type. You find objects
by name and type by using the IPluginFactory.find() method.

Finds objects related to other objects

You can create functions to find objects that relate to a given object by a given relation type.
You define relations in the vso.xml file. You can also create finders to find dependent child
objects that relate to all parents by a given relation type. You implement the
IPluginFactory.findRelation() method to find any objects that are related to a given parent
object by a given relation type. You implement the IPluginFactory.hasChildrenInRelation()
method to discover whether at least one child object exists for a parent instance.

Define queries to find objects according to your own criteria

You can create object finders that implement query rules that you define. You implement the
IPluginFactory.findAll() method to find all objects that satisfy query rules you define when
the factory calls this method. You obtain the results of the findAll() method in a QueryResult
object that contains a list of all of the objects found that match the query rules you define.

For more information about the IPluginFactory interface, all of its methods, and all of the other
classes of the plug-in API, see Orchestrator Plug-In API Reference.

Role of Finder Objects

Finder objects identify and locate specific instances of managed object types in the plugged-in
technology. Orchestrator can modify and interact with objects that it finds in the plugged-in
technology by running workflows on the finder objects.

Every instance of a given managed object type in the plugged-in technology must have a unique
identifier so that Orchestrator finder objects can find them. The plugged-in technology provides
the unique identifiers for the object instances as strings. When a workflow runs, Orchestrator sets
the unique identifiers of the objects that it finds as workflow attribute values. Workflows that
require an object of a given type as an input parameter run on a specific instance of that type of
object.

Finder objects that plug-ins add to the Orchestrator JavaScript API have the plug-in name as a
prefix. For example, the VirtualMachine managed object type from the vCenter Server API
appears in Orchestrator as the VC:VirtualMachine JavaScript type.

For example, Orchestrator accesses a specific VC:VirtualMachine instance through the vCenter
Server plug-in by implementing a finder object that uses the id attribute of the virtual machine as
its unique identifier. You can pass this object instance to workflow elements as attribute values.

An Orchestrator plug-in maps the objects from the plugged-in technology to equivalent
Orchestrator finder objects in the <finder> elements in the vso.xml file. The <finder> elements
identify the method or function from the plugged-in technology that obtains the unique identifier
for a specific instance of an object. The <finder> elements also define relations between objects,
to find objects by the manner in which they relate to other objects.

Finder objects appear in the Orchestrator Inventory tab under the plug-in that contains them.

Developing with VMware vRealize Orchestrator

VMware, Inc. 247

Role of Scripting Objects

Scripting objects are JavaScript representations of objects from the plugged-in technology.
Scripting objects from plug-ins appear in the Orchestrator Javascript API and you can use them
in scripted elements in workflows and actions.

Scripting objects from plug-ins appear in the Orchestrator JavaScript API as JavaScript modules,
types, and classes. Most finder objects have a scripting object representation. The JavaScript
classes can add methods and attributes to the Orchestrator JavaScript API that represent the
methods and attributes from objects from the API of the plugged-in technology. The plugged-in
technology provides the implementations of the objects, types, classes, attributes, and methods
independently of Orchestrator. For example, the vCenter Server plug-in represents all the objects
from the vCenter Server API as JavaScript objects in the Orchestrator JavaScript API, with
JavaScript representations of all the classes, methods and attributes that the vCenter Server API
defines. You can use the vCenter Server scripting classes and the methods and attributes they
define in Orchestrator scripted functions.

For example, the VirtualMachine managed object type from the vCenter Server API is found by
the VC:VirtualMachine finder and appears in the Orchestrator JavaScript API as the
VcVirtualMachine JavaScript class. The VcVirtualMachine JavaScript class in the Orchestrator
JavaScript API defines all of the same methods and attributes as the VirtualMachine managed
object from the vCenter Server API.

An Orchestrator plug-in maps the objects, types, classes, attributes, and methods from the
plugged-in technology to equivalent Orchestrator JavaScript objects, types, classes, attributes,
and methods in the <scripting-objects> element in the vso.xml file.

Role of Event Handlers

Events are changes in the states or attributes of the objects that Orchestrator finds in the
plugged-in technology. Orchestrator monitors events by implementing event handlers.

Orchestrator plug-ins allow you to monitor events in a plugged-in technology in different ways.
The Orchestrator plug-in API allows you to create the following types of event handlers to
monitor events in a plugged-in technology.

Listeners

Passively monitor objects in the plugged-in technology for changes in their state. The
plugged-in technology or the plug-in implementation defines the events that listeners
monitor. Listeners do not initiate events, but notify Orchestrator when the events occur.
Listeners detect events either by polling the plugged-in technology or by receiving
notifications from the plugged-in technology. When events occur, Orchestrator policies or
workflows that are waiting for the event can react by starting operations in the Orchestrator
server. Listener components are optional.

Policies

Developing with VMware vRealize Orchestrator

VMware, Inc. 248

Monitor certain events in the plugged-in technology and start operations in the Orchestrator
server if the events occur. Policies can monitor policy triggers and policy gauges. Policy
triggers define an event in the plugged-in technology that, when it occurs, causes a running
policy to start an operation in the Orchestrator server, for example running a workflow. Policy
gauges define ranges of values for the attributes of an object in the plugged-in technology
that, when exceeded, cause Orchestrator to start an operation. Policies are optional.

Workflow triggers

If a running workflow contains a Wait Event element, when it reaches that element it
suspends its run and waits for an event to occur in a plugged-in technology. Workflow
triggers define the events in the plugged-in technology that Waiting Event elements in
workflows await. You register workflow triggers with watchers. Workflow triggers are
optional.

Watchers

Watch workflow triggers for a certain event in the plugged-in technology, on behalf of a
Waiting Event element in a workflow. When the event occurs, the watchers notify any
worklows that are waiting for that event. Watchers are optional.

Contents and Structure of a Plug-In

Orchestrator plug-ins must contain a standard set of components and conform to a standard file
structure. For a plug-in to conform to the standard file structure, it must include specific folders
and files.

To create an Orchestrator plug-in, you define how Orchestrator accesses and interacts with the
objects in the plugged-in technology. And, you map all of the objects and functions of the
plugged-in technology to corresponding Orchestrator objects and functions in the vso.xml file.

The vso.xml file must include a reference to every type of object or operation to expose to
Orchestrator. Every object that the plug-in finds in the plugged-in technology must have a unique
identifier that you provide. You define the object names in the finder elements and in the object
elements in the vso.xml file.

A plug-in can be delivered as a standard Java archive file (JAR) or a ZIP file, but in either case,
the file must be renamed with a .dar extension.

Note You can use the Orchestrator Control Center to import a DAR file to the Orchestrator
server.

n Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 249

n Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in
technology. You must include a reference to every type of object or operation to expose to
Orchestrator in the vso.xml file.

n Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object>
elements in the vso.xml file.

n Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

n File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders
and files. You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must
rename with the .dar extension.

Defining the Application Mapping in the vso.xml File

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

The vso.xml file provides the following information to the Orchestrator server:

n A version, name, and description for the plug-in

n References to the classes of the plugged-in technology and to the associated plug-in adapter

n Initializes the plug-in when the Orchestrator server starts

n Scripting types to represent the types of objects in the plugged-in technology

n The relationships between object types to define how the objects display in the Orchestrator
Inventory

n Scripting classes that map the objects and operations in the plugged-in technology to
functions and object types in the Orchestrator JavaScript API

n Enumerations to define a list of constant values that apply to all objects of a certain type

n Events that Orchestrator monitors in the plugged-in technology

The vso.xml file must conform to the XML schema definition of Orchestrator plug-ins. You can
access the schema definition at the VMware support site.

http://www.vmware.com/support/orchestrator/plugin-4-1.xsd

For descriptions of all of the elements of the vso.xml file, see Elements of the vso.xml Plug-In
Definition File.

Developing with VMware vRealize Orchestrator

VMware, Inc. 250

Format of the vso.xml Plug-In Definition File

The vso.xml file defines how the Orchestrator server interacts with the plugged-in technology.
You must include a reference to every type of object or operation to expose to Orchestrator in
the vso.xml file.

Objects that you include in the vso.xml file appear as scripting objects in the Orchestrator
scripting API, or as finder objects in the Orchestrator Inventory tab.

As part of the open architecture and standardized implementation of plug-ins, the vso.xml file
must adhere to a standard format.

The following diagram shows the format of the vso.xml plug-in definition file and how the
elements nest within each other.

Figure 6-2. Format of the vso.xml Plug-In Definition File

Naming Plug-In Objects

You must provide a unique identifier for every object that the plug-in finds in the plugged-in
technology. You define the object names in the <finder> elements and in the <object> elements in
the vso.xml file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 251

The finder operations that you define in the factory implementation find objects in the plugged-in
technology. When the plug-in finds objects, you can use them in Orchestrator workflows and
pass them from one workflow element to another. The unique identifiers that you provide for the
objects allows them to pass between the elements in a workflow.

The Orchestrator server stores only the type and identifier of each object that it processes, and
stores no information about where or how Orchestrator obtained the object. You must name
objects consistently in the plug-in implementation so that you can track the objects you obtain
from plug-ins.

If the Orchestrator server stops while workflows are running, when you restart the server the
workflows resume at the workflow element that was running when the server stopped. The
workflow uses the identifiers to retrieve objects that the element was processing when the
server stopped.

Plug-In Object Naming Conventions

You must follow Java class naming conventions when you name all objects in plug-ins.

Important Because of the way in which the workflow engine performs data serialization, do not
use the following string sequences in object names. Using these character sequences in object
identifiers causes the workflow engine to parse workflows incorrectly, which can cause
unexpected behavior when you run the workflows.

n #;#

n #,#

n #=#

Use these guidelines when you name objects in plug-ins.

n Use an initial uppercase letter for each word in the name.

n Do not use spaces to separate words.

n For letters, only use the standard characters A to Z and a to z.

n Do not use special characters, such as accents.

n Do not use a number as the first character of a name.

n Where possible, use fewer than 10 characters.

Table 6-1. Plug-In Object Naming Rules shows rules that apply to individual object types.

Developing with VMware vRealize Orchestrator

VMware, Inc. 252

Table 6-1. Plug-In Object Naming Rules

Object Type Naming Rules

Plug-In n Defined in the <module> element in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique. You cannot run two plug-ins with the same name in an Orchestrator
server.

Finder object n Defined in the <finder> elements in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique in the plug-in.

Orchestrator adds the plug-in name and a colon to the finder object names in the finder object
types in the Orchestrator scripting API. For example, the VirtualMachine object type from the
vCenter Server plug-in appears in the Orchestrator scripting API as VC:VirtualMachine.

Scripting object n Defined in the <scripting-object> elements in the vso.xml file.

n Must adhere to Java class naming conventions.

n Must be unique in the Orchestrator server.

n To avoid confusing scripting objects with finder objects of the same name or with scripting
objects from other plug-ins, always prefix the scripting object name with the name of the
plug-in, but do not add a colon. For example, the VirtualMachine class from the vCenter
Server plug-in appears in the Orchestrator scripting API as the VcVirtualMachine class.

File Structure of the Plug-In

A plug-in must conform to a standard file structure and must include certain specific folders and
files. You deliver a plug-in as a standard Java archive (JAR) or ZIP file, that you must rename with
the .dar extension.

The contents of the DAR archive must use the following folder structure and naming conventions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 253

Table 6-2. Structure of the DAR Archive

Folders Description

plug-in_name\VSO-INF\ Contains the vso.xml file that defines the mapping of the
objects in the plugged-in technology to Orchestrator
objects.

The VSO-INF folder and the vso.xml file are mandatory.

plug-in_name\lib\ Contains the JAR files that contain the binaries of the
plugged-in technology. Also contains JAR files that contain
the implementations of the adapter, factory, notification
handlers, and other interfaces in the plug-in.

The lib folder and JAR files are mandatory.

plug-in_name\resources\ Contains resource files that the plug-in requires. The
resources folder can include the following types of
element:

n Image files, to represent the objects of the plug-in in
the Orchestrator Inventory tab.

n Scripts, to define initialization behavior when the plug-in
starts.

n Orchestrator packages, that can contain custom
workflows, actions, and other resources that interact
with the objects that you access by using the plug-in.

You can organize resources in subfolders. For example,
resources\images\, resources\scripts\, or resources
\packages\.

The resources folder is optional.

You use the Orchestrator Control Center to import a DAR file to the Orchestrator server.

Orchestrator Plug-In API Reference

The Orchestrator plug-in API defines Java interfaces and classes to implement and extend when
you develop the IPluginAdaptor and IPluginFactory implementations to create a plug-in.

All classes are contained in the ch.dunes.vso.sdk.api package, unless stated otherwise.

IAop Interface

The IAop interface provides methods to obtain and set properties on objects in the plugged-in
technology.

public interface IAop

The IAop interface defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 254

Method Returns Description

get(java.lang.String propertyName,

java.lang.Object object,

java.lang.Object sdkObject)

java.lang.Object Obtains a property from a given object
in the plug-in.

set(java.lang.String propertyName,

java.lang.String propertyValue,

java.lang.Object object)

Void Sets a property on a given object in
the plug-in.

IDynamicFinder Interface

The IDynamicFinder interface returns the ID and properties of a finder programmatically, instead
defining the ID and properties in the vso.xml file.

The IDynamicFinder Interface defines the following methods.

Method Returns Description

getIdAccessor(java.lang.String type) java.lang.String Provides an OGNL expression to
obtain an object ID programmatically.

getProperties(java.lang.String type) java.util.List<SDKFinderProperty> Provides a list of object properties
programmatically.

IPluginAdaptor Interface

You implement the IPluginAdaptor interface to manage plug-in factories, events and watchers.
The IPluginAdaptor interface defines an adapter between a plug-in and the Orchestrator server.

IPluginAdaptor instances are resonsible for session management. The IPluginAdaptor Interface
defines the following methods.

Method Returns Description

addWatcher(PluginWatcher watcher) Void Adds a watcher to monitor for a
specific event

createPluginFactory(java.lang.String

sessionID, java.lang.String username,

java.lang.String password,

IPluginNotificationHandler

notificationHandler)

IPluginFactory Creates an IPluginFactory instance.
The Orchestrator server uses the
factory to obtain objects from the
plugged-in technology by their ID, by
their relation to other objects, and so
on.

The session ID allows you to identify a
running session. For example, a user
could log into two different
Orchestrator clients and run two
sessions simultaneously.

Similarly, starting a workflow creates a
session that is independent from the
client in which the workflow started. A
workflow continues to run even if you
close the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 255

Method Returns Description

installLicenses(PluginLicense[]

licenses)

Void Installs the license information for
standard plug-ins that VMware
provides

registerEventPublisher(java.lang.Stri

ng type, java.lang.String id,

IPluginEventPublisher publisher)

Void Sets triggers and gauges on an
element in the inventory

removeWatcher(java.lang.String

watcherId)

Void Removes a watcher

setPluginName(java.lang.String

pluginName)

Void Gets the plug-in name from the vso.xml
file

setPluginPublisher(IPluginPublisher

pluginPublisher)

Void Sets the publisher of the plug-in

uninstallPluginFactory(IPluginFactory

plugin)

Void Uninstalls a plug-in factory.

unregisterEventPublisher(java.lang.St

ring type, java.lang.String id,

IPluginEventPublisher publisher)

Void Removes triggers and gauges from an
element in the inventory

IPluginEventPublisher Interface

The IPluginEventPublisher interface publishes gauges and triggers on an event notification bus
for Orchestrator policies to monitor.

You can create IPluginEventPublisher instances directly in the plug-in adaptor implementation or
you can create them in separate event generator classes.

You can implement the IPluginEventPublisher interface to publish events in the plugged-in
technology to the Orchestrator policy engine. You create methods to set policy triggers and
gauges on objects in the plugged-in technology and event listeners to listen for events on those
objects.

Policies can implement either gauges or triggers to monitor objects in the plugged-in technology.
Policy gauges monitor the attributes of objects and push an event in the Orchestrator server if
the values of the objects exceed certain limits. Policy triggers monitor objects and push an event
in the Orchestrator server if a defined event occurs on the object. You register policy gauges and
triggers with IPluginEventPublisher instances so that Orchestrator policies can monitor them.

The IPluginEventPublisher Interface defines the following methods.

Developing with VMware vRealize Orchestrator

VMware, Inc. 256

Type Returns Description

pushGauge(java.lang.String type,

java.lang.String id, java.lang.String

gaugeName, java.lang.String

deviceName, java.lang.Double

gaugeValue)

Void Publish a gauge for policies to monitor.
Takes the following parameters:

n type: Type of the object to
monitor.

n id: Identifier of the object to
monitor.

n gaugeName: Name for this gauge.

n deviceName: Name for the type of
attribute that the gauge monitors.

n gaugeValue: Value for which the
gauge monitors the object.

pushTrigger(java.lang.String type,

java.lang.String id, java.lang.String

triggerName, java.util.Properties

additionalProperties)

Void Publish a trigger for policies to
monitor. Takes the following
parameters:

n type: Type of the object to
monitor.

n id: Identifier of the object to
monitor.

n triggerName: Name for this trigger.

n additionalProperties: Any
additional properties for the trigger
to monitor.

IPluginFactory Interface

The IPluginAdaptor returns IPluginFactory instances. IPluginFactory instances run commands in
the plugged-in application, and finds objects upon which to perform Orchestrator operations.

The IPluginFactory interface defines the following field:

static final java.lang.String RELATION_CHILDREN

The IPluginFactory interface defines the following methods.

Method Returns Description

executePluginCommand(java.lang.String

cmd)

Void Use the plug-in to run a command.
VMware recommends that you do not
use this method.

find(java.lang.String type,

java.lang.String id)

java.lang.Object Use the plug-in to find an object.
Identify the object by its ID and type.

findAll(java.lang.String type,

java.lang.String query)

QueryResult Use the plug-in to find objects of a
certain type and that match a query
string. You define the syntax of the
query in the IPluginFactory
implementation of the plug-in. If you
do not define query syntax, findAll()
returns all objects of the specified
type.

Developing with VMware vRealize Orchestrator

VMware, Inc. 257

Method Returns Description

findRelation(java.lang.String

parentType, java.lang.String

parentId, java.lang.String

relationName)

java.util.List Determines whether an object has
children.

hasChildrenInRelation(java.lang.Strin

g parentType, java.lang.String

parentId, java.lang.String

relationName)

HasChildrenResult Finds all children related to a given
parent by a certain relation.

invalidate(java.lang.String type,

java.lang.String id)

Void Invalidate objects by type and ID.

void invalidateAll() Void Invalidate all objects in the cache.

IPluginNotificationHandler Interface

The IPluginNotificationHandler defines methods to notify Orchestrator of different types of
event that occur on the objects Orchestrator accesses through the plug-in.

The IPluginNotificationHandler Interface defines the following methods.

Method Returns Description

getSessionID() java.lang.String Returns the current session ID

notifyElementDeleted(java.lang.String

type, java.lang.String id)

Void Notifies the system that an object with
the given type and ID has been
deleted

notifyElementInvalidate(java.lang.Str

ing type, java.lang.String id)

Void Notifies the system that an object's
relations have changed. You can use
the notifyElementInvalidate() method
to notify Orchestrator of all changes in
relations between objects, not only for
relation changes that invalidate an
object. For example, adding a child
object to a parent represents a change
in the relation between the two
objects.

notifyElementUpdated(java.lang.String

type, java.lang.String id)

Void Notifies the system that an object's
attributes have been modified

notifyMessage(ch.dunes.vso.sdk.api.Er

rorLevel severity, java.lang.String

type, java.lang.String id,

java.lang.String message)

Void Publishes an error message related to
the current module

IPluginPublisher Interface

The IPluginPublisher interface publishes a watcher event on an event notification bus for long-
running workflow Wait Event elements to monitor.

Developing with VMware vRealize Orchestrator

VMware, Inc. 258

When a workflow trigger starts an event in the plugged-in technology, a plug-in watcher that
watches that trigger and that is registered with an IPluginPublisher instance notifies any waiting
workflows that the event has occurred.

The IPluginPublisher Interface defines the following method.

Type Value Description

pushWatcherEvent(java.lang.String id,

java.util.Properties properties)

Void Publish a watcher event on event
notification bus

WebConfigurationAdaptor Interface

The WebConfigurationAdaptor interface implements IConfigurationAdaptor and defines methods to
locate and install a Web application in the configuration tab for a plug-in.

Note The WebConfigurationAdaptor interface is deprecated since Orchestrator 4.1. To add a Web
application to the configuration, implement IConfigurationAdaptor and use the configuration-war
attribute in the vso.xml file to identify the Web application.

The WebConfigurationAdaptor interface defines the following methods.

Method Returns Description

getWebAppContext() String Locates the WAR file of the Web
application for the configuration tab.
Provide the name and path to the
WAR file from the /webapps directory in
the DAR file as a string.

setWebConfiguration(boolean

webConfiguration)

Boolean Determine whether the contents of the
configuration tab are defined by a
Web application.

PluginTrigger Class

The PluginTrigger class creates a trigger module that obtains information about objects and
events to monitor in the plugged-in technology, on behalf of a Wait Event element in a workflow.

The PluginTrigger class defines methods to obtain or set the type and name of the object to
monitor, the nature of the event, and a timeout period.

You create implementations of the PluginTrigger class exclusively for use by Wait Event
elements in workflows. You define policy triggers for Orchestrator policies in classes that define
events and implement the IPluginEventPublisher.pushTrigger() method.

public class PluginTrigger

extends java.lang.Object

implements java.io.Serializable

The PluginTrigger class defines the following methods:

Developing with VMware vRealize Orchestrator

VMware, Inc. 259

Method Returns Description

getModuleName() java.lang.String Obtains the name of the trigger
module.

getProperties() java.util.Properties Obtains a list of properties for the
trigger.

getSdkId() java.lang.String Obtains the ID of the object to monitor
in the plugged-in technology.

getSdkType() java.lang.String Obtains the type of the object to
monitor in the plugged-in technology.

getTimeout() Long Obtains the trigger timeout period.

setModuleName(java.lang.String

moduleName)

Void Sets the name of the trigger module.

setProperties(java.util.Properties

properties)

Void Sets a list of properties for the trigger.

setSdkId(java.lang.String sdkId) Void Sets the ID of the object to monitor in
the plugged-in technology.

setSdkType(java.lang.String sdkType) Void Sets the type of the object to monitor
in the plugged-in technology.

setTimeout(long timeout) Void Sets a timeout period in seconds. A
negative value deactivates the
timeout.

Constructors

n PluginTrigger()

n PluginTrigger(java.lang.String moduleName, long timeout, java.lang.String sdkType,

java.lang.String sdkId)

PluginWatcher Class

The PluginWatcher class watches a trigger module for a defined event in the plugged-in
technology on behalf of a long-running workflow Wait Event element.

The PluginWatcher class defines a constructor that you can use to create plug-in watcher
instances. The PluginWatcher class defines methods to obtain or set the name of the workflow
trigger to watch and a timeout period.

public class PluginWatcher

extends java.lang.Object

implements java.io.Serializable

The PluginWatcher class defines the following methods:

Method Returns Description

getId() java.lang.String Obtains the ID of the trigger

getModuleName() java.lang.String Obtains the trigger module name

Developing with VMware vRealize Orchestrator

VMware, Inc. 260

Method Returns Description

getTimeoutDate() Long Obtains the trigger timeout date

getTrigger() Void Obtains a trigger

setId(java.lang.String id) Void Sets the ID of the trigger

setTimeoutDate() Void Sets the trigger timeout date

Constructor

PluginWatcher(PluginTrigger trigger)

QueryResult Class

The QueryResult class contains the results of a find query made on the objects Orchestrator
accesses through the plug-in.

public class QueryResult

extends java.lang.Object

implements java.io.Serializable

The totalCount value can be greater than the number of elements the QueryResult returns, if the
total number of results found exceeds the number of results the query returns. The number of
results the query returns is defined in the query syntax in the vso.xml file.

The QueryResult class defines the following methods:

Method Returns Description

addElement(java.lang.Object element) Void Adds an element to the QueryResult

addElements(java.util.List elements) Void Adds a list of elements to the
QueryResult

getElements() java.util.List Obtains elements from the plugged in
application

getTotalCount() Long Obtains a count of all the elements
available in the plugged in technology

isPartialResult() Boolean Determines whether the result
obtained is complete

removeElement(java.lang.Object

element)

Void Removes an element from the plugged
in technology

setElements(java.util.List elements) Void Sets elements in the plugged in
technology

setTotalCount(long totalCount) Void Sets the total number of elements
available in the plugged in technology

Constructors

n QueryResult()

n QueryResult(java.util.List ret)

Developing with VMware vRealize Orchestrator

VMware, Inc. 261

n QueryResult(java.util.List elements, long totalCount)

SDKFinderProperty Class

The SDKFinderProperty class defines methods to obtain and set properties in the objects found in
the plugged in technology by the Orchestrator finder objects. The IDynanmicFinder.getProperties
method returns SDKFinderProperty objects.

public class SDKFinderProperty

extends java.lang.Object

The SDKFinderProperty class defines the following methods:

Method Returns Description

getAttributeName() java.lang.String Obtains an object attribute name

getBeanProperty() java.lang.String Obtains properties from a Java bean

getDescription() java.lang.String Obtains an object description

getDisplayName() java.lang.String Obtains an object display name

getPossibleResultType() java.lang.String Obtains the possible types of result the
finder returns

getPropertyAccessor() java.lang.String Obtains an object property accessor

getPropertyAccessorTree() java.lang.Object Obtains an object property accessor
tree

isHidden() Boolean Shows or hides the object

isShowInColumn() Boolean Shows or hides the object in the
database column

isShowInDescription() Boolean Shows or hides the object description

setAttributeName(java.lang.String

attributeName)

Void Sets an object attribute name

setBeanProperty(java.lang.String

beanProperty)

Void Sets properties in a Java bean

setDescription(java.lang.String

description)

Void Sets an object description

setDisplayName(java.lang.String

displayName)

Void Sets an object display name

setHidden(boolean hidden) Void Show or hide the object

setPossibleResultType(java.lang.Strin

g possibleResultType)

Void Sets the possible types of result the
finder returns

setPropertyAccessor(java.lang.String

propertyAccessor)

Void Sets an object property accessor

setPropertyAccessorTree(java.lang.Obj

ect propertyAccessorTree)

Void Sets an object property accessortree

Developing with VMware vRealize Orchestrator

VMware, Inc. 262

Method Returns Description

setShowInColumn(boolean showInTable) Void Show or hide the object in the
database column

setShowInDescription(boolean

showInDescription)

Void Show or hide the object description

Constructor

SDKFinderProperty(java.lang.String attributeName, java.lang.String displayName,

java.lang.String beanProperty, java.lang.String propertyAccessor)

PluginExecutionException Class

The PluginExecutionException class returns an error message if the plug-in encounters an
exception when it runs an operation.

public class PluginExecutionException

extends java.lang.Exception

implements java.io.Serializable

The PluginExecutionException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toStringfillInStackTrace,
getCause, getLocalizedMessage, getMessage, getStackTrace, initCause, printStackTrace

Constructor

PluginExecutionException(java.lang.String message)

PluginOperationException Class

The PluginOperationException class handles errors encountered during a plug-in operation.

public class PluginOperationException

extends java.lang.RuntimeException

implements java.io.Serializable

The PluginOperationException class inherits the following methods from class
java.lang.Throwable:

fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, initCause,
printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString

Constructor

PluginOperationException(java.lang.String message)

Developing with VMware vRealize Orchestrator

VMware, Inc. 263

HasChildrenResult Enumeration

The HasChildrenResult Enumeration declares whether a given parent has children. The
IPluginFactory.hasChildrenInRelation method returns HasChildrenResult objects.

public enum HasChildrenResult

extends java.lang.Enum<HasChildrenResult>

implements java.io.Serializable

The HasChildrenResult enumeration defines the following constants:

n public static final HasChildrenResult Yes

n public static final HasChildrenResult No

n public static final HasChildrenResult Unknown

The HasChildrenResult enumeration defines the following methods:

Method Returns Description

getValue() int Returns one of the following values:

1

Parent has children

-1

Parent has no children

0

Unknown, or invalid parameter

valueOf(java.lang.String name) static HasChildrenResult Returns an enumeration constant of
this type with the specified name. The
String must match exactly an identifier
used to declare an enumeration
constant of this type. Do not use
whitespace characters in the
enumeration name.

values() static HasChildrenResult[] Returns an array containing the
constants of this enumeration type, in
the order they are declared. This
method can iterate over constants as
follows:

for (HasChildrenResult c :
HasChildrenResult.values())
System.out.println(c);

The HasChildrenResult enumeration inherits the following methods from class java.lang.Enum:

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Developing with VMware vRealize Orchestrator

VMware, Inc. 264

ScriptingAttribute Annotation Type

The ScriptingAttribute annotation type annotates an attribute from an object in the plugged in
technology for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,FIELD})

public @interface ScriptingAttribute

The ScriptingAttribute annotation type has the following value:

public abstract java.lang.String value

ScriptingFunction Annotation Type

The ScriptingFunction annotation type annotates a method for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value={METHOD,CONSTRUCTOR})

public @interface ScriptingFunction

The ScriptingFunction annotation type has the following value:

public abstract java.lang.String value

ScriptingParameter Annotation Type

The ScriptingParameter annotation type annotates a parameter for use as a property in scripting.

@Retention(value=RUNTIME)

@Target(value=PARAMETER)

public @interface ScriptingParameter

The ScriptingParameter annotation type has the following value:

public abstract java.lang.String value

Elements of the vso.xml Plug-In Definition File

The vso.xml file contains a set of standard elements. Some of the elements are mandatory while
others are optional. Each element has attributes that define values for the objects and operations
you map to Orchestrator objects and operations.

In addition, elements can have zero or more child elements. A child element further defines the
parent element. The same child element can appear in multiple parent elements. For example, the
description element has no child elements, but appears as a child element for many parent
elements: module, example, trigger, gauge, finder, constructor, method, object, and enumeration.

Each element definition that follows lists its attributes, parents and children.

Developing with VMware vRealize Orchestrator

VMware, Inc. 265

module Element

A module describes a set of plug-in objects to make available to Orchestrator.

The module contains information about how data from the plugged-in technology maps to Java
classes, versioning, how to deploy the module, and how the plug-in appears in the Orchestrator
inventory.

The <module> element is optional. The <module> element has the following attributes:

Attributes Value Description

name String Defines the type of all the <finder>
elements in the plug-in. Mandatory
attribute.

version Number The plug-in version number, for use
when reloading packages in a new
version of the plug-in. Mandatory
attribute.

build-number Number The plug-in build number, for use when
reloading packages in a new version of
the plug-in. Mandatory attribute.

image Image file The icon to display in the Orchestrator
Inventory. Mandatory attribute.

display-name String The name that appears in the
Orchestrator Inventory. Optional
attribute.

interface-mapping-allowed true or false VMware strongly discourages interface
mapping. Optional attribute.

Table 6-3. Element Hierarchy

Parent Element Child Elements

None n <description>

n <installation>

n <configuration>

n <finder-datasources>

n <inventory>

n <finders>

n <scripting-objects>

n <enumerations>

description Element

The <description> elements provide descriptions of the elements of the plug-in that appear in the
API Explorer documentation.

You add the text that appears in the API Explorer documentation between the <description> and
</description> tags.

Developing with VMware vRealize Orchestrator

VMware, Inc. 266

The <description> element is optional. The <description> element has no attributes.

Table 6-4. Element Hierarchy

Parent Elements Child Elements

n <module>

n <example>

n <trigger>

n <gauge>

n <finder>

n <constructor>

n <method>

n <object>

n <enumeration>

None

deprecated Element

The <deprecated> element marks objects and methods that are deprecated in the API Explorer
documentation.

You add the text that appears in the API Explorer documentation between the <deprecated> and
</deprecated> tags.

The <deprecated> element is optional. The <deprecated> element has no attributes.

Table 6-5. Element Hierarchy

Parent Elements Child Elements

n <method>

n <object>

None

url Element

The <url> element provides a URL that points to external documentation about an object or
enumeration.

You provide the URL between the <url> and </url> tags.

The <url> element is optional. The <url> element has no attributes.

Table 6-6. Element Hierarchy

Parent Elements Child Elements

n <enumeration>

n <object>

None

installation Element

The <installation> element allows you to install a package or run a script when the server starts.

The <installation> element is optional. The <installation> element has the following attributes:

Developing with VMware vRealize Orchestrator

VMware, Inc. 267

Attributes Value Description

mode always, never, or version Setting the mode value results in the
following behavior when the
Orchestrator server starts:

n The action always runs

n The action never runs

n The action runs when the server
detects a newer version of the
plug-in

Mandatory attribute.

Table 6-7. Element Hierarchy

Parent Element Child Element

<module> <action>

action Element

The <action> element specifies the action that runs when the Orchestrator server starts.

The <action> element attributes provide the path to the Orchestrator package or script that
defines the plug-in's behavior when it starts.

The <action> element is optional. A plug-in can have an unlimited number of <action> elements.
The <action> element has the following attributes.

Attributes Value Description

resource String The path to the Java package or script
from the root of the dar file.
Mandatory attribute.

type install-package or execute-script Either installs the specified
Orchestrator package in the
Orchestrator server, or runs the
specified script. Mandatory attribute.

Table 6-8. Element Hierarchy

Parent Element Child Elements

<installation> None

finder-datasources Element

The <finder-datasources> element is the container for the <finder-datasource> elements.

The <finder-datasources> element is optional. The <finder-datasources> element has no
attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 268

Table 6-9. Element Hierarchy

Parent Element Child Elements

<module> <finder-datasource>

finder-datasource Element

The <finder-datasource> element points to the Java class file of the IPluginAdaptor
implementation that you create for the plug-in.

You set how Orchestrator accesses the objects of the plugged-in technology in the <finder-
datasource> element. The <finder-datasource> element identifies the Java class of the plug-in
adapter that you create. The plug-in adapter class instantiates the plug-in factory that you
create. The plug-in factory defines the methods that find objects in the plugged-in technology.
You can set timeouts in the <finder-datasource> element for the finder method calls that the
factory performs. Different timeouts apply to the different finder methods from the
IPluginFactory interface.

The <finder-datasource> element is optional. A plug-in can have an unlimited number of <finder-
datasources> elements. The <finder-datasource> element has the following attributes.

Attributes Value Description

name String Identifies the data source in the
<finder> element datasource attributes.
Equivalent to an XML id. Mandatory
attribute.

adaptor-class Java class Points to the IPluginAdaptor
implementation you define to create
the plug-in adapter, for example,
com.vmware.plugins.sample.Adaptor.
Mandatory attribute.

concurrent-call true (default) or false Allows multiple users to access the
adapter at the same time. You must
set concurrent-call to false if the plug-
in does not support concurrent calls.
Optional attribute.

invoker-mode direct (default) or timeout Sets a timeout on the finder function. If
set to direct, calls to finder functions
never time out. If set to timeout, the
Orchestrator server applies the
timeout period that corresponds to the
finder method. Optional attribute.

anonymous-login-mode never (default) or always Passes or does not pass the user's
username and password to the plug-in.
Optional attribute.

timeout-fetch-relation Number; default 30 seconds Applies to calls from findRelation().
Optional attribute.

timeout-find-all Number; default 60 seconds Applies to calls from findAll().
Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 269

Attributes Value Description

timeout-find Number; default 60 seconds Applies to calls from find(). Optional
attribute.

timeout-has-children-in-relation Number; default 2 seconds Applies to calls from
findChildrenInRelation(). Optional
attribute.

timeout-execute-plugin-command Number; default 30 seconds Applies to calls from
executePluginCommand(). Optional
attribute.

Table 6-10. Element Hierarchy

Parent Element Child Elements

<finder-datasources> None

inventory Element

The <inventory> element defines the root of the hierarchical list for the plug-in that appears in the
Orchestrator client Inventory view and object selection dialog boxes.

The <inventory> element does not represent an object in the plugged-in application, but rather
represents the plug-in itself as an object in the Orchestrator scripting API.

The <inventory> element is optional. The <inventory> element has the following attribute.

Attributes Value Description

type An Orchestrator object type The type of the <finder> element that
represents the root of the hierarchy of
objects. Mandatory attribute.

Table 6-11. Element Hierarchy

Parent Element Child Elements

<module> None

finders Element

The <finders> element is the container for all the <finder> elements.

The <finders> element is optional. The <finders> element has no attributes.

Table 6-12. Element Hierarchy

Parent Element Child Element

<module> <finder>

Developing with VMware vRealize Orchestrator

VMware, Inc. 270

finder Element

The <finder> element represents in the Orchestrator client a type of object found through the
plug-in.

The <finder> element identifies the Java class that defines the object the object finder
represents. The <finder> element defines how the object appears in the Orchestrator client
interface. It also identifies the scripting object that the Orchestrator scripting API defines to
represent this object.

Finders act as an interface between object formats used by different types of plugged-in
technologies.

The <finder> element is optional. A plug-in can have an unlimited number of <finder> elements.
The <finder> element defines the following attributes:

Attributes Value Description

type An Orchestrator object type Type of object represented by the
finder. Mandatory attribute.

datasource <finder-datasource name> attribute Identifies the Java class that defines
the object by using the datasource
refid. Mandatory attribute.

dynamic-finder Java method Defines a custom finder method you
implement in an IDynamicFinder
instance, to return the ID and
properties of a finder
programmatically, instead defining it in
the vso.xml file. Optional attribute.

hidden true or false (default) If true, hides the finder in the
Orchestrator client. Optional attribute.

image Path to a graphic file A 16x16 icon to represent the finder in
hierarchical lists in the Orchestrator
client. Optional attribute.

java-class Name of a Java class The Java class that defines the object
the finder finds and maps to a scripting
object. Optional attribute.

script-object <scripting-object type> attribute The <scripting-object> type, if any, to
which to map this finder. Optional
attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 271

Table 6-13. Element Hierarchy

Parent Element Child Elements

<finders> n <id>

n <description>

n <properties>

n <default-sorting>

n <inventory-children>

n <relations>

n <inventory-tabs>

n <events>

properties Element

The <properties> element is the container for <finder><property> elements.

The <properties> element is optional. The <properties> element has no attributes.

Table 6-14. Element Hierarchy

Parent Element Child Element

<finder> <property>

property Element

The <property> element maps the found object's properties to Java properties or method calls.

You can call on the methods of the SDKFinderProperty class when you implement the plug-in
factory to obtain properties for the plug-in factory implementation to process.

You can show or hide object properties in the views in the Orchestrator client. You can also use
enumerations to define object properties.

The <property> element is optional. A plug-in can have an unlimited number of <property>
elements. The <property> element has the following attributes.

Attributes Value Description

name Finder name The name the FinderResult uses to
store the element. Mandatory
attribute.

display-name Finder name The displayed property name. Optional
attribute.

bean-property Property name You use the bean-property attribute to
identify a property to obtain using get
and set operations. If you identify a
property named MyProperty, the plug-in
defines getMyProperty and
setMyProperty operations.

You set one or the other of bean-
property or property-accessor, but not
both. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 272

Attributes Value Description

property-accessor The method that obtains a property
value from an object

The property-accessor attribute allows
you to define an OGNL expression to
validate an object's properties.

You set one or the other of bean-
property or property-accessor, but not
both. Optional attribute.

show-in-column true (default) or false If true, this property shows in the
Orchestrator client results table.
Optional attribute.

show-in-description true (default) or false If true, this property shows in the
object description. Optional attribute.

hidden true or false (default) If true, this property is hidden in all
cases. Optional attribute.

linked-enumeration Enumeration name Links a finder property to an
enumeration. Optional attribute.

Table 6-15. Element Hierarchy

Parent Element Child Elements

<properties> Child Elements

relations Element

The <relations> element is the container for <finder><relation> elements.

The <relations> element is optional. The <relations> element has no attributes.

Table 6-16. Element Hierarchy

Parent Element Child Element

<finder> <relation>

relation Element

The <relation> element defines how objects relate to other objects.

You define the relation name in the <relation> element.

The <relation> element is optional. A plug-in can have an unlimited number of <relation>
elements. The <relation> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 273

Attributes Value Description

name Relation name A name for this relation. Mandatory
attribute.

type Orchestrator object type The type of the object that relates to
another object by this relation.
Mandatory attribute.

cardinality to-one or to-many Defines the relation between the
objects as one-to-one or one-to-many.
Optional attribute.

Table 6-17. Element Hierarchy

Parent Element Child Elements

<relations> None

id Element

The <id> element defines a method to obtain the unique ID of the object that the finder identifies.

The <id> element is optional. The <id> element has the following attributes.

Attributes Value Description

accessor Method name The accessor attribute allows you to
define an OGNL expression to validate
an object's properties. Mandatory
attribute.

Table 6-18. Element Hierarchy

Parent Element Child Elements

<finder> None

inventory-children Element

The <inventory-children> element defines the hierarchy of the lists that show the objects in the
Orchestrator client Inventory view and object selection boxes.

The <inventory-children> element is optional. The <inventory-children> element has no
attributes.

Table 6-19. Element Hierarchy

Parent Element Child Element

<finder> <relation-link>

relation-link Element

The <relation-link> element defines the hierarchies between parent and child objects in the
Inventory tab.

Developing with VMware vRealize Orchestrator

VMware, Inc. 274

The <relation-link> element is optional. A plug-in can have an unlimited number of <relation-
link> elements. The <relation-link> element has the following attribute.

Type Value Description

name Relation name A refid to a relation name. Mandatory
attribute.

Table 6-20. Element Hierarchy

Parent Element Child Elements

<inventory-children> None

events Element

The <events> element is the container for the <trigger> and <gauge> elements.

The <events> element can contain an unlimited number of triggers or gauges.

The <events> element is optional. The <events> element has no attributes.

Table 6-21. Element Hierarchy

Parent Element Child Elements

<finder> n <trigger>

n <gauge>

trigger Element

The <trigger> element declares the triggers you can use for this finder. You must implement the
registerEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
triggers.

The <trigger> element is optional. The <trigger> element has the following attribute.

Type Value Description

name Trigger name A name for this trigger. Mandatory
attribute.

Table 6-22. Element Hierarchy

Parent Element Child Elements

<events> n <description>

n <trigger-properties>

trigger-properties Element

The <trigger-properties> element is the container for the <trigger-property> elements.

The <trigger-properties> element is optional. The <trigger-properties> element has no
attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 275

Table 6-23. Element Hierarchy

Parent Element Child Element

<trigger> <trigger-property>

trigger-property Element

The <trigger-property> element defines the properties that identify a trigger object.

The <trigger-property> element is optional. A plug-in can have an unlimited number of <trigger-
property> elements. The <trigger-property> element has the following attributes.

Type Value Description

name Trigger name A name for the trigger. Optional
attribute.

display-name Trigger name The name that displays in the
Orchestrator client. Optional attribute.

type Trigger type The object type that defines the
trigger. Mandatory attribute.

Table 6-24. Element Hierarchy

Parent Element Child Elements

<trigger-properties> None

gauge Element

The <gauge> element defines the gauges you can use for this finder. You must implement
theregisterEventPublisher() and unregisterEventPublisher() methods of IPluginAdaptor to set
gauges.

The <gauge> element is optional. A plug-in can have an unlimited number of <gauge> elements. The
<gauge> element has the following attributes.

Type Value Description

name Gauge name A name for the gauge. Mandatory
attribute.

min-value Number Minimum threshold. Optional attribute.

max-value Number Maximum threshold. Optional attribute.

unit Object type Object type that defines the gauge.
Mandatory attribute.

format String The format of the monitored value.
Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 276

Table 6-25. Element Hierarchy

Parent Element Child Element

<events> <description>

scripting-objects Element

The <scripting-objects> element is the container for the <object> elements.

The <scripting-objects> element is optional. The <scripting-objects> element has no attributes.

Table 6-26. Element Hierarchy

Parent Element Child Element

<module> <object>

object Element

The <object> element maps the plugged-in technology's constructors, attributes, and methods to
JavaScript object types that the Orchestrator scripting API exposes.

See Naming Plug-In Objects for object naming conventions.

The <object> element is optional. A plug-in can have an unlimited number of <object> elements.
The <object> element has the following attributes.

Type Value Description

script-name JavaScript name Scripting name of the class. Must be
globally unique. Mandatory attribute.

java-class Java class The Java class wrapped by this
JavaScript class. Mandatory attribute.

create true (default) or false If true, you can create a new instance
of this class. Optional attribute.

strict true or false (default) If true, you can only call methods you
annotate or declare in the vso.xml file.
Optional attribute.

is-deprecated true or false (default) If true, the object maps a deprecated
Java class. Optional attribute.

since-version String Version since the Java class is
deprecated. Optional attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 277

Table 6-27. Element Hierarchy

Parent Element Child Elements

<scripting-objects> n <description>

n <deprecated>

n <url>

n <constructors>

n <attributes>

n <methods>

n <singleton>

constructors Element

The <constructors> element is the container for the <object><constructor> elements.

The <constructors> element is optional. The <constructors> element has no attributes.

Table 6-28. Element Hierarchy

Parent Element Child Element

<object> <constructor>

constructor Element

The <constructor> element defines a constructor method. The <constructor> method produces
documentation in the API Explorer.

The <constructor> element is optional. A plug-in can have an unlimited number of <constructor>
elements. The <constructor> element has no attributes.

Table 6-29. Element Hierarchy

Parent Element Child Elements

<constructors> n <description>

n <parameters>

Constructor parameters Element

The <parameters> element is the container for the <constructor><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 6-30. Element Hierarchy

Parent Element Child Element

<constructor> <parameter>

Constructor parameter Element

The <parameter> element defines the constructor's parameters.

Developing with VMware vRealize Orchestrator

VMware, Inc. 278

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name to use in API
documentation. Mandatory attribute.

type Orchestrator parameter type Parameter type to use in API
documentation. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6-31. Element Hierarchy

Parent Element Child Elements

<parameters> None

attributes Element

The <attributes> element is the container for the <object><attribute> elements.

The <attributes> element is optional. The <attributes> element has no attributes.

Table 6-32. Element Hierarchy

Parent Element Child Element

<object> <attribute>

attribute Element

The <attribute> element maps the attributes of a Java class from the plugged-in technology to
JavaScript attributes that the Orchestrator JavaScript engine makes available.

The <attribute> element is optional. A plug-in can have an unlimited number of <attribute>
elements. The <attribute> element has the following attributes.

Type Value Description

java-name Java attribute Name of the Java attribute. Mandatory
attribute.

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

Developing with VMware vRealize Orchestrator

VMware, Inc. 279

Type Value Description

return-type String The type of object this attribute
returns. Appears in the API Explorer
documentation. Optional attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

read-only true or false If true, you cannot modify this
attribute. Optional attribute.

is-optional true or false If true, this field can be null. Optional
attribute.

show-in-api true or false If false, this attribute does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
attribute. Optional attribute.

since-version Number The version at which the attribute was
deprecated. Optional attribute.

Table 6-33. Element Hierarchy

Parent Element Child Elements

<attributes> None

methods Element

The <methods> element is the container for the <object><method> elements.

The <methods> element is optional. The <methods> element has no attributes.

Table 6-34. Element Hierarchy

Parent Element Child Element

<object> <method>

method Element

The <method> element maps a Java method from the plugged-in technology to a JavaScript
method that the Orchestrator JavaScript engine exposes.

The <method> element is optional. A plug-in can have an unlimited number of <method> elements.
The <method> element has the following attributes.

Developing with VMware vRealize Orchestrator

VMware, Inc. 280

Type Value Description

java-name Java method Name of the Java method signature
with argument types in parentheses,
for example, getVms(DataStore).
Mandatory attribute.

script-name JavaScript method Name of the corresponding JavaScript
method. Mandatory attribute.

return-type Java object type The type this method obtains. Optional
attribute.

Note If the JavaScript return type is
Properties, the supported underlying
Java implementations are
java.util.HashMap and
java.util.Hashtable.

static true or false If true, this method is static. Optional
attribute.

show-in-api true or false If false, this method does not appear
in API documentation. Optional
attribute.

is-deprecated true or false If true, the object maps a deprecated
method. Optional attribute.

since-version Number The version at which the method was
deprecated. Optional attribute.

Table 6-35. Element Hierarchy

Parent Element Child Elements

<methods> n <deprecated>

n <description>

n <example>

n <parameters>

example Element

The <example> element allows you to add code examples to Javascript methods that appear in
the API Explorer documentation.

The <example> element is optional. The <example> element has no attributes.

Table 6-36. Element Hierarchy

Parent Element Child Elements

<method> n <code>

n <description>

Developing with VMware vRealize Orchestrator

VMware, Inc. 281

code Element

The <code> element provides example code that appears in the API Explorer documentation.

You provide the code example between the <code> and </code> tags. The <code> element is
optional. The <code> element has no attributes.

Table 6-37. Element Hierarchy

Parent Element Child Elements

<example> None

Method parameters Element

The <parameters> element is the container for the <method><parameter> elements.

The <parameters> element is optional. The <parameters> element has no attributes.

Table 6-38.

Parent Element Child Element

<method> <parameter>

Method parameter Element

The <parameter> element defines the method's input parameters.

The <parameter> element is optional. A plug-in can have an unlimited number of <parameter>
elements. The <parameter> element has the following attributes.

Type Value Description

name String Parameter name. Mandatory attribute.

type Orchestrator parameter type Parameter type. Mandatory attribute.

is-optional true or false If true, value can be null. Optional
attribute.

since-version String Method version. Optional attribute.

Table 6-39. Element Hierarchy

Parent Element Child Element

<parameters> None

singleton Element

The <singleton> element creates a JavaScript scripting object as a singleton instance.

A singleton object behaves in the same way as a static Java class. Singleton objects define
generic objects for the plug-in to use, rather than defining specific instances of objects that
Orchestrator accesses in the plugged-in technology. For example, you can use a singleton object
to establish the connection to the plugged-in technology.

Developing with VMware vRealize Orchestrator

VMware, Inc. 282

The <singleton> element is optional. The <singleton> element has the following attributes.

Type Value Description

script-name JavaScript object Name of the corresponding JavaScript
object. Mandatory attribute.

datasource Java object The source Java object for this
JavaScript object. Mandatory attribute.

Table 6-40. Element Hierarchy

Parent Element Child Element

<object> None

enumerations Element

The <enumerations> element is the container for the <enumeration> elements.

The <enumerations> element is optional. The <enumerations> element has no attributes.

Table 6-41. Element Hierarchy

Parent Element Child Element

<module> <enumeration>

enumeration Element

The <enumeration> element defines common values that apply to all objects of a certain type.

If all objects of a certain type require a certain attribute, and if the range of values for that
attribute is limited, you can define the different values as enumeration entries. For example, if a
type of object requires a color attribute, and if the only available colors are red, blue, and green,
you can define three enumeration entries to define these three color values. You define entries
as child elements of the enumeration element.

The <enumeration> element is optional. A plug-in can have an unlimited number of <enumeration>
elements. The <enumeration> element has the following attribute.

Type Value Description

type Orchestrator object type Enumeration type. Mandatory
attribute.

Table 6-42. Element Hierarchy

Parent Element Child Elements

<enumerations> n <url>

n <description>

n <entries>

Developing with VMware vRealize Orchestrator

VMware, Inc. 283

entries Element

The <entries> element is the container for the <enumeration><entry> elements.

The <entries> element is optional. The <entries> element has no attributes.

Table 6-43. Element Hierarchy

Parent Element Child Element

<enumeration> <entry>

entry Element

The <entry> element provides a value for an enumeration attribute.

The <entry> element is optional. A plug-in can have an unlimited number of <entry> elements. The
<entry> element has the following attributes.

Type Value Description

id Text The identifier that objects use to set
the enumeration entry as an attribute.
Mandatory attribute.

name Text The entry name. Mandatory attribute.

Table 6-44. Element Hierarchy

Parent Element Child Elements

<entries> None

Best Practices for Orchestrator Plug-In Development

You can improve certain aspects of the Orchestrator plug-ins that you develop by understanding
the structure and content of plug-ins, as well as by understanding how to avoid specific
problems.

n Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building
a plug-in layer by layer or you can start building all layers of the plug-in at the same time.

n Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as
well as entire systems, such as vCloud Director, with Orchestrator. Depending on the
technology that you integrate with Orchestrator, plug-ins can be categorized as plug-ins for
services, or general purpose plug-ins, and plug-ins for systems.

Developing with VMware vRealize Orchestrator

VMware, Inc. 284

n Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins,
implement the required Java classes and JavaScript objects, develop the plug-in workflows
and actions, as well as provide the workflow presentation.

n Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your
Orchestrator plug-ins helps you to improve the quality of the plug-ins.

n Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

Approaches for Building Orchestrator Plug-Ins

You can use different approaches to build your Orchestrator plug-ins. You can start building a
plug-in layer by layer or you can start building all layers of the plug-in at the same time.

For information about plug-in layers, see Structure of an Orchestrator Plug-In.

Bottom-Up Plug-In Development

A plug-in can be built layer by layer using bottom-up development approach.

Bottom-up development approach builds the plug-in layer by layer starting from the lower level
layers and continuing with the higher level layers. When this approach is mixed with an
interactive and iterative development approach, then part or whole layer is delivered for each
iteration. At the end of the N iterations the plug-in is completely finished.

Figure 6-3. Bottom-up plug-in development

High level workflow
Iteration n

Iteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

An advantage of the bottom-up plug-in development approach is that development is focused
on one layer at a time.

Developing with VMware vRealize Orchestrator

VMware, Inc. 285

Consider the following disadvantages of bottom-up plug-in development approach.

n The progress of the plug-in development is difficult to show until some insertions are
completed.

n It does not fit very well in an Agile development practices.

The bottom-up development process is considered good enough for small plug-ins, with reduced
or non-existent set of wrapping classes, scripting objects, actions, or workflows.

Top-Down Plug-In Development

A plug-in can be built by slicing it into top-down functionality, using top-down development
approach.

When the top-down approach is mixed with an Agile development process, new functionality is
delivered for each iteration. As a result, at the end of the iteration N the plug-in is completely
implemented.

Figure 6-4. Top-down plug-in development

High level workflow

Iteration nIteration 1

Building block workflows

Action

Scripting objects

Wrapping classes

Infrastructure classes

The top-down plug-in development approach has the following advantages.

n The progress of the plug-in development is easy to show from the first iteration because new
functionality is completed for each iteration and the plug-in can be released and used after
every iteration.

n Completing a vertical slice of functionality allows for very clearly defined success criteria and
definition of what has been done, as well as better communication between developers,
product management, and quality assurance (QA) engineers.

n Allows the QA engineers to start testing and automating from the beginning of the
development process. Such an approach results in valuable feedback and decreases the
overall project delivery time frame.

Developing with VMware vRealize Orchestrator

VMware, Inc. 286

A disadvantage of the top-down plug-in development approach is that the development is in
progress on different layers at the same time.

You should apply the top-down plug-in development process for most plug-ins. It is appropriate
for plug-ins with dynamic requirements.

Types of Orchestrator Plug-Ins

By using plug-ins, you can integrate general-purpose libraries or utilities like XML or SSH, as well
as entire systems, such as vCloud Director, with Orchestrator. Depending on the technology that
you integrate with Orchestrator, plug-ins can be categorized as plug-ins for services, or general
purpose plug-ins, and plug-ins for systems.

Plug-Ins for Services

Plug-ins for services or general-purpose plug-ins provide functionality that can be considered as
a service inside Orchestrator.

Figure 6-5. Architecture of plug-ins for services

Orchestrator Plug-In
core

Adaptor Generic
library

System

Service Plug-In

Plug-ins for services expose generic libraries or utilities to Orchestrator, such as XML, SSH, or
SOAP. For example, the following plug-ins that are available in Orchestrator are plug-ins for
services.

JDBC plug-in

Lets you use any database within a workflow.

Mail plug-in

Lets you send emails within a workflow.

SSH plug-in

Lets you open SSH connections and run commands within a workflow.

XML plug-in

Lets you manage XML documents within a workflow.

Plug-ins for services have the following characteristics.

Complexity

Developing with VMware vRealize Orchestrator

VMware, Inc. 287

Plug-ins for services have low to medium levels of complexity. Plug-ins for services expose a
specific library, or part of a library, inside Orchestrator so as to provide concrete functionality.
For example, the XML plug-in adds an implementation of a Document Object Model (DOM)
XML parser to the Orchestrator JavaScript API.

Size

Plug-ins for services are relatively small in size. They require the same basic set of classes as
for all plug-ins, and other classes that offer new scripting objects to add new functionality.

Inventory

Plug-ins for services require a small inventory of objects to work, or they do not require an
inventory at all. Plug-ins for services have a generic and small object model, and so, they do
not need to show this model inside the Orchestrator inventory.

Plug-Ins for Systems

Plug-ins for systems connect the Orchestrator workflow engine to an external system so that you
can orchestrate the external system.

Following are examples for plug-ins for systems.

vCenter Server plug-in

Lets you manage vCenter Server instances using workflows.

vCloud Director plug-in

Lets you interact with a vCloud Director installation within a workflow.

Cisco UCSM plug-in

Lets you interact with Cisco entities within a workflow.

Following are the main characteristics of plug-ins for systems.

Complexity

Plug-ins for systems have a higher level of complexity than general-purpose plug-ins,
because the technologies that they expose are relatively complex. Plug-ins for systems must
represent all the elements of the external system inside Orchestrator to interact with the
external system and offer its functionality in Orchestrator. If the external system provides an
integration mechanism, you can use it to expose the functionality of the system in
Orchestrator more easily. However, besides representing the elements of the external system
in Orchestrator, plug-ins for systems might also need to offer high scalability, provide a
caching mechanism, deal with events and notifications, and so on.

Size

Plug-ins for system are medium to big in size. Plug-ins for systems require many classes apart
from the basic set of classes because usually they offer a large number of scripting objects.

Developing with VMware vRealize Orchestrator

VMware, Inc. 288

Plug-ins for systems might require some other helper and auxiliary classes that will interact
with them.

Inventory

Usually, plug-ins for systems have a large number of objects, and you must expose these
objects properly in the inventory so that you can locate them and work with them easily in
Orchestrator. Because of the large number of objects that plug-ins for systems need to
expose, you should build auxiliary tool or a process to auto-generate as much code as
possible for the plug-in. For example, the vCenter Server plug-in provides such a tool.

Plug-Ins for Object-Oriented Systems

Object-oriented systems offer an interaction mechanism that is based on objects and RPC.

The most widely used model for an object-oriented system is the Web service model that uses
SOAP. The objects inside this model have a set of attributes that are related to the state of the
objects and offer a set of remote methods that are invoked on the target system side.

Figure 6-6. Plug-Ins for Object-Oriented Systems

Orchestrator Plug-In
core

Adaptor System

Object-oriented system Plug-In

Specific
library

e.g.
WSDL

Generation

You can consider the following when you implement plug-ins for object-oriented systems.

n If you use SOAP, you can use the WSDL file to generate a set of classes that combine the
object model and the communication mechanism.

n This object model is almost everything that you have to expose inside Orchestrator.

Plug-Ins for Resource-Oriented Systems

Resource-oriented systems provide an interaction mechanism that is based on resources and
simple operations that use HTTP methods.

The most representative model for a resource-oriented system is the REST model, combined for
example with XML. The objects inside this model have a set of attributes that are related to their
state. To invoke methods on the target system (communication mechanism), you must use the
standard HTTP methods such as GET, POST, PUT, and so on, and follow some conventions.

Developing with VMware vRealize Orchestrator

VMware, Inc. 289

Figure 6-7. Plug-ins for resource-oriented systems

System

Resource-oriented system Plug-In

Comm.
library

Model
library

e.g.
XSD

Generation

Orchestrator Plug-In
core

Adaptor

You can consider the following when you develop plug-ins for resource-oriented systems.

n If you use REST or only HTTP with XML, you get one or more XML schema files to be able to
read and write messages. From these schemas, you can generate a set of classes that define
the object model. This set of classes only defines the state of the objects because the
operations are defined implicitly with the HTTP methods, for example, as defined in the
vCloud Director plug-in, or explicitly with some specific XML messages, such as the Cisco
UCSM plug-in.

n You need to implement the communication mechanism in another set of classes. This set of
classes defines a new object model that interacts with the original object model. The object
model for the communication mechanism consists of objects and methods only.

n You can expose both the original object model and the object model for the communication
mechanism inside Orchestrator. This might add some complexity depending on how both
object models are exposed, and on whether you are merging related objects from both sides
(to simulate an object-oriented system) or keeping them separate.

Plug-In Implementation

You can use certain helpful practices and techniques when you structure your plug-ins,
implement the required Java classes and JavaScript objects, develop the plug-in workflows and
actions, as well as provide the workflow presentation.

n Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

n Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache
objects, bring objects in background, clone objects, and so on. By following such
approaches, you can improve the performance of your plug-ins, avoid concurrency
problems, and improve the responsiveness of the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 290

n Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-
in performs.

n Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

n Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and
rules.

Project Structure

You can apply a standard structure for the projects of your Orchestrator plug-ins.

You can use a standard Maven structure with modules for your plug-in projects to bring clarity in
where every piece of functionality resides.

Table 6-45. Structure of a Plug-In Project

Module Description

/myAwesomePlugin-plugin The root of the plug-in project.

/o11nplugin-myAwesomePlugin The module that composes the final plug-in DAR file.

/o11nplugin-myAwesomePlugin-config The module that contains the plug-in configuration Web
application. It generates a standard WAR file.

/o11nplugin-myAwesomePlugin-core The module that contains all the classes that implement
any of the standard Orchestrator plug-in interfaces and
other auxiliary classes that they use. It generates a
standard JAR file.

/o11nplugin-myAwesomePlugin-model The module that contains all the classes that help you
integrate the third-party technology with Orchestrator
through the plug-in. The classes should not contain any
direct reference to the standard Orchestrator plug-in APIs.

/o11nplugin-myAwesomePlugin-package The module that imports an external Orchestrator package
file with actions and workflows to include it inside the final
plug-in DAR file. The module is optional.

Project Internals

You can apply certain approaches when implementing your plug-in, for example, cache objects,
bring objects in background, clone objects, and so on. By following such approaches, you can
improve the performance of your plug-ins, avoid concurrency problems, and improve the
responsiveness of the Orchestrator client.

Developing with VMware vRealize Orchestrator

VMware, Inc. 291

Cache Objects

Your plug-in can interact with a remote service, and this interaction is provided by local objects
that represent remote objects on the service side. To achieve good performance of the plug-in
as well as good responsiveness of the Orchestrator UI, you can cache the local objects instead of
getting them every time from the remote service. You can consider the scope of the cache, for
example, one cache for all the plug-in clients, one cache per user of the plug-in, and one cache
per user of the third-party service. When implemented, your caching mechanism is integrated
with the plug-in interface for finding and invalidating objects.

Bring Objects in Background

If you have to show large lists of objects in the plug-in inventory and do not have a fast way to
retrieve those objects, you can bring objects in background. You can bring object in background,
for example, by having objects with two states, fake and loaded. Assume that the fake objects are
very easy to create and provide the minimal information that you have to show in the inventory,
such as name and ID. Then it would be possible to always return fake objects, and when all the
information (the real object) is really needed, the using entity or the plug-in can invoke a method
load automatically to get the real object. You can even configure the process of loading objects
to start automatically after the fake objects are returned, to anticipate the actions of the using
entity.

Clone Objects to Avoid Concurrency Problems

If you use a cache for your plug-in, you have to clone objects. Use of a cache that always returns
the same instance of an object to every entity that requests it can have unwanted effects. For
example, entity A requests object O, and the entity views the object in the inventory with all its
attributes. At the same time, entity B requests object O as well, and entity A runs a workflow that
starts changing the attributes of object O. At the end of its run, the workflow invokes the object's
update method to update the object on the server side. If entity A and entity B get the same
instance of object O, entity A views in the inventory all the changes that entity B performs, even
before the changes are committed on the server side. If the run goes fine, it should not be a
problem, but if the run fails, the attributes of object O for entity A are not reverted. In such a
case, if the cache (the find operations of the plug-in) returns a clone of the object instead of the
same instance all the time, each using entity views and modifies its own copy, avoiding
concurrency issues, at least within Orchestrator.

Notify Changes to Others

Problems might occur when you use a cache and clone objects simultaneously. The biggest one
is that the object that is using entity views might not be the latest version that is available for the
object. For example, if an entity displays the inventory, the objects are loaded once, but at the
same time, if another entity is changing some of the objects, the first entity does not view the
changes. To avoid this problem, you can use the PluginWatcher and IPluginPublisher methods
from the Orchestrator plug-in API to notify that something has changed to allow other instances
of Orchestrator clients to see the changes. This also applies to a unique instance of the

Developing with VMware vRealize Orchestrator

VMware, Inc. 292

Orchestrator client when changes from one object from the inventory affect other objects of the
inventory, and they need to be notified too. The operations that are prone to use notifications
are adding, updating, and deleting objects when these objects, or some properties of these
objects, are shown in the inventory.

Enable Finding Any Object at Any Time

You must implement the find method of the IPluginFactory interface to find objects just by type
and ID. The find method can be invoked directly after restarting Orchestrator and resuming a
workflow.

Simulate a Query Service if You Do Not Have One

The Orchestrator client can require querying for some objects in specific cases or showing them
not as a tree but as a list or a table, for example. This means that your plug-in must be able to
query for some set of objects at any moment. If the third-party technology offers a query
service, you need to adapt and use this service. Otherwise, you should be able to simulate a
query service, despite of the higher complexity or the lower performance of the solution.

Find Methods Should Not Return Runtime Exceptions

The methods from the IPluginFactory interface that implement the searches inside the plug-in
should not throw controlled or uncontrolled runtime exceptions. This might be the cause of
strange validation error failures when a workflow is running. For example, between two nodes of
a workflow, the find method is invoked if an output from the first node is an input of the second
node. At that moment, if the object is not found because of any runtime exception, you might get
no more information than a validation error in the Orchestrator client. After that, it depends on
how the plug-in logs the exceptions in to get more or less information inside the log files.

Workflow Internals

You can implement a workflow to monitor long-time operations that your Orchestrator plug-in
performs.

You can implement a workflow for monitoring long-time running operations such as task
monitoring. This workflow can be based on Orchestrator triggers and waiting events. You must
consider that a workflow that is blocked waiting for a task can be resumed as soon as the
Orchestrator server starts. The plug-in must be able to get all the required information to resume
the monitoring process properly.

The monitoring workflow or the task that it can use internally should provide a mechanism to
specify the polling rate and a possible timeout.

The process of debugging a piece of scripting code inside a workflow is not easy, especially if
the code does not invoke any Java code. Because of this, sometimes the only option is to use
the logging methods offered by the default Orchestrator scripting objects.

Workflows and Actions

To ease the workflow development and usage, you can use certain good practices.

Developing with VMware vRealize Orchestrator

VMware, Inc. 293

Start Developing Workflows as Building Blocks

A building block can be a simple workflow that requires a few input parameters and returns a
simple output. If you have a rich set of building blocks, you can create higher-level workflows
easily, and you can offer a better set of tools for composing complex workflows.

Create Higher-Level Workflows Based on Smaller Components

If you have to develop a complex workflow with several inputs and internal steps, you can split it
into smaller and simpler building block workflows and actions.

Create Actions Whenever Possible

You can create actions to achieve additional flexibility when you develop workflows.

n To create complex objects or parameters for scripting methods easily

n To avoid repeating common pieces of code all the time

n To perform UI validations

Workflows Should Invoke Actions Whenever Possible

Actions can be invoked directly as nodes inside the workflow schema. This can keep the
workflow schema simpler, because you do not need to add scripting code blocks to invoke a
single action.

Fill In the Expected Information

Provide information for every element of a workflow or an action.

n Provide a description of the workflow or action.

n Provide a description of the input parameters.

n Provide a description of the outputs.

n Provide a description of the attributes for the workflows.

Keep the Version Information Updated

When you version plug-ins, add meaningful comments with information such as major updates to
the plug-in, important implementation details, and so on.

Workflow Presentation

When you create the presentation of a workflow, you should apply certain structure and rules.

Use the following properties for the workflow inputs in the workflow presentation.

Developing with VMware vRealize Orchestrator

VMware, Inc. 294

Table 6-46. Properties for Workflow Inputs

Properties Usage

Show in Inventory Use this property to help the user to run a workflow from
the inventory view.

Specify a root object to be shown in the chooser Use this property to help the user to select inputs. If the
root object can be refreshed in the presentation, is an
attribute, or is retrieved by an object method, you need to
create or set an appropriate action to refresh the object in
the presentation.

Maximum string length Use this property for long strings such as names,
descriptions, file paths, and so on.

Minimum string length Use this property to avoid empty strings from the testing
tools.

Custom validation Implement non-simple validations with actions.

Organize the inputs with steps and display group. Such organization helps the user identify and
distinguish all the input parameters of a workflow.

Recommendations for Orchestrator Plug-In Development

Adhering to certain certain practices when developing the different components of your
Orchestrator plug-ins helps you to improve the quality of the plug-ins.

Table 6-47. Useful Practices in Plug-In Implementation

Component Item Description

General Access to third-party API Plug-ins should provide simplified methods for accessing the
third-party API wherever possible.

Interface Plug-ins should provide a coherent and standard interface for
users, even when the API does not.

Action Scripting objects You should create actions for every creation, modification,
deletion, and all other methods available for a scripting object.

Description The description of an action should describe what the action
does instead of how it works.

Scripting When you use scripting to get the properties or methods of
an object, you can check whether the object value is different
from null or undefined.

Deprecation If an action is deprecated, the comment or the throw statement
should indicate the replacement action, or the action should
call a new replacement action so that solutions that are built
on the deprecated version of the action do not fail.

Workflow User interface operations in
the orchestrated technology

You should create a workflow for every operation that is
available in the user interface of the orchestrated technology.

Description The description of a workflow should describe what the
workflow does instead of how it works.

Developing with VMware vRealize Orchestrator

VMware, Inc. 295

Table 6-47. Useful Practices in Plug-In Implementation (continued)

Component Item Description

Presentation property
mandatory input

You must set the mandatory input property for all mandatory
workflow inputs.

Presentation property default
value

If you develop a workflow that configures an entity, the
workflow presentation should load the default configuration
values for this entity. For example, if you develop a workflow
that is named Host Configuration, the presentation of the
workflow must load the default values of the host
configuration.

Presentation property Show in
inventory

You must set the Show in inventory property so that you have
contextual workflows on inventory objects.

Presentation property specify
a root parameter

You should use this property in workflows when it is not
necessary to browse the inventory from the tree root .

Workflow validation You must validate workflows and fix all errors.

Object creation All workflows that create a new object should return the new
object as an output parameter.

Deprecation If a workflow is deprecated, the comment or the throw
statement should indicate the replacement workflow, or the
deprecated workflow should call a new replacement workflow
to ensure that solutions that are built on previous versions of
the workflow do not fail.

Inventory Host disconnection If your inventory contains a connection to a host and this host
becomes unavailable, you should indicate that the host is
disconnected. You can do this either by renaming the root
object by appending - disconnected or by removing the tree
of objects underneath this object, in the same manner as the
vCloud Director plug-in does.

Select value as list property An inventory object must be selectable as treeview or a list.

Host manager If the plug-in implements a host object for the target system,
then a parent hostmanager root object should exist with
properties for adding, removing, or editing host properties.

Getting or updating objects If a query service is running on the orchestrated technology,
you should use it for getting multiple objects.

Child discovery If you need to retrieve child objects separately, the retrieval
process must be multithreaded and non-blocking on a single
error.

Orchestrator object change All workflows that can change the state of an element in the
inventory must update the inventory to avoid having objects
out of synchronization.

Developing with VMware vRealize Orchestrator

VMware, Inc. 296

Table 6-47. Useful Practices in Plug-In Implementation (continued)

Component Item Description

External object change You can use a notification mechanism to notify about changes
in the orchestrated technology that occur as a result of
operations that are performed outside of Orchestrator. In case
such operations lead to removal of objects from the
orchestrated technology, you must refresh the inventory
accordingly to avoid failures or loss of data. For example, if a
virtual machine is deleted from vCenter Server, the vCenter
Server plug-in updates the inventory to remove the object of
the removed virtual machine.

Finder object Finder objects should have properties that can be used to
differentiate objects. These are typically the properties that
are present in the user interface.

Scripting object Implementation The equals method must be implemented to insure that ==
operation works on the same object as in some cases the
object might have two instances.

Plug-in object properties Objects that have parent objects should implement a parent
property.

Plug-in object properties Objects that have child objects should implement GET methods
that return arrays of child objects.

Inventory objects Inventory objects should be searchable with Server.find.

All inventory objects should be serializable so they can be
used as input or output attributes in a workflow.

Constructor and methods In most cases, scriptable objects should have either a
constructor, or should be returned by other object attributes
or methods.

Object ID Objects that have an ID that is issued from an external system
should use an internal ID to ensure that no ID duplication
occurs when you are orchestrating more than one server.

Searching for objects search or find methods should implement a filter so that the
specified name or ID can be found instead of just all objects.
For example, the Orchestrator server has a Server.FindForId
method that allows finding a plug-in object by its ID. To do
this, the method must be implemented for each findable
object in the plug-in.

Trigger If possible, triggers should be available for objects that
change so that Orchestrator can have policies triggered on
various events. For example, to determine when a new virtual
machine is added, powered on, powered off, and so on,
Orchestrator can monitor a trigger or an event in the vCenter
plug-in on the Datacenter object.

Object properties Objects that reside in other plug-ins should have properties
for being easily converted from one plug-in object to another.
For example, virtual machine objects need to have a moref
(managed object reference ID).

Developing with VMware vRealize Orchestrator

VMware, Inc. 297

Table 6-47. Useful Practices in Plug-In Implementation (continued)

Component Item Description

Session manager If you are connecting to a remote server that can have a
different session, the plug-in should implement a shared
session and a session per user.

Trigger Trigger All long operations and blocking methods should be able to
start asynchronously with a task returned, and generate a
trigger event on completion.

Enumerations Enums Enumerations for a given type should have an inventory
object that allows selecting from the different values in the
enumeration.

Logging Logs Methods should implement different log levels.

Versioning Plug-in version The plug-in version should follow standards and be updated
along with the plug-in update.

API documentation Methods Methods that are described in the API documentation should
never throw the exception no xyz method / property on an
object. Instead, methods should return null when no
properties are available and be documented with details when
these properties are not available.

vso.xml All objects, methods, and properties must be documented in
vso.xml.

Documenting Plug-In User Interface Strings and APIs

When you write user interface (UI) strings for Orchestrator plug-ins and the related API
documentation, follow the accepted rules of style and format.

General Recommendations

n Use the official names for VMware products involved in the plug-in. For example, use the
official names for the following products and VMware terminology.

Correct Term Do Not Use

vCenter Server VC or vCenter

vCloud Director vCloud

n End all workflow descriptions with a period. For example, Creates a new Organization. is a
workflow description.

n Use a text editor with a spell checker to write the descriptions and then move them to the
plug-in.

n Ensure that the name of the plug-in exactly matches the approved third-party product name
that it is associated with.

Developing with VMware vRealize Orchestrator

VMware, Inc. 298

Workflows and Actions

n Write informative descriptions. One or two sentences are enough for most of the actions and
workflows.

n Higher-level workflows might include more extensive descriptions and comments.

n Start descriptions with a verb, for example, Creates…. Do not use self-referential language like
This workflow creates.

n Put a period at the end of descriptions that are complete sentences.

n Describe what a workflow or action does instead of how it is implemented.

n Workflows and actions usually are included in folders and packages. Include a small
description for these folders and packages as well. For example, a workflow folder can have
a description similar to Set of workflows related to vApp Template management.

Parameters of Workflows and Actions

n Start workflow and action descriptions with a descriptive noun phrase, for example, Name of.
Do not use a phrase like It's the name of.

n Do not put a period at the end of parameter and action descriptions. They are not complete
sentences.

n Input parameters of workflows must specify a label with appropriate names in the
presentation view. In many cases, you can combine related inputs in a display group. For
example, instead of having two inputs with the labels Name of the Organization and Full
name of the Organization, you can create a display group with the label Organization and
place the inputs Name and Full name in the Organization group.

n For steps and display groups, add descriptions or comments that appear in the workflow
presentation as well.

Plug-In API

n The documentation of the API refers to all of the documentation in the vso.xml file and the
Java source files.

n For the vso.xml file, use the same rules for the descriptions of finder objects and scripting
objects with their methods that you use for workflows and actions. Descriptions of object
attributes and method parameters use the same rules as the workflow and action
parameters.

n Avoid special characters in the vso.xml file and include the descriptions inside a <!
[CDATA[insert your description here!]]> tag.

n Use the standard Javadoc style for the Java source files.

Developing with VMware vRealize Orchestrator

VMware, Inc. 299

Creating Plug-Ins by Using Maven 7
The Orchestrator Appliance provides a repository containing Maven artifacts, which you can use
to create plug-in projects from archetypes.

The repository is hosted at https://orchestrator_server:8281/vco-repo/ or http://
orchestrator_server:8280/vco-repo/, in case your Maven version does not support the HTTPS
protocol. This location is embedded in the pom.xml file of standard Orchestrator Maven plug-in
projects. You can only access the repository if you have deployed the Orchestrator Appliance.

This chapter includes the following topics:

n Create an Orchestrator Plug-In with Maven from an Archetype

n Maven Archetypes

n Maven-Based Plug-In Development Best Practices

Create an Orchestrator Plug-In with Maven from an
Archetype

You can create a standard Orchestrator Maven plug-in from an archetype by running commands
in the command-line interface.

Prerequisites

n Verify that you have installed Orchestrator Appliance 5.5.1 or later.

n Verify that you have installed Apache Maven 3.0.4 or 3.0.5.

VMware, Inc. 300

Procedure

1 Create a project in interactive mode by choosing an archetype.

mvn archetype:generate -DarchetypeCatalog=https://orchestrator_server:8281/vco-repo/archetype-

catalog.xml -DrepoUrl=https://orchestrator_server:8281/vco-repo -Dmaven.repo.remote=https://

orchestrator_server:8281/vco-repo -Dmaven.wagon.http.ssl.insecure=true -

Dmaven.wagon.http.ssl.allowall=true

Note You can only access the Maven repository if you have deployed the Orchestrator
Appliance.

2 (Optional) If you cannot access the repository over HTTPS, you can access it over HTTP. If
you access the repository over HTTP or have a valid SSL certificate, you can create a project
without using the -Dmaven.wagon.http.ssl.allowall=true flag.

mvn archetype:generate -DarchetypeCatalog=http://orchestrator_server:8280/vco-repo/archetype-

catalog.xml -DrepoUrl=http://orchestrator_server:8280/vco-repo -Dmaven.repo.remote=http://

orchestrator_server:8280/vco-repo -Dmaven.wagon.http.ssl.insecure=true

3 Navigate to the project directory and build the plug-in.

cd project_dir && mvn clean install -Dmaven.wagon.http.ssl.insecure=true -

Dmaven.wagon.http.ssl.allowall=true

Results

If the build process is successful, the plug-in .dar file is generated in the DAR module's target/
directory.

Maven Archetypes

You can use a set of predefined Maven archetypes as templates for developing Orchestrator
plug-ins.

The following table describes the default Maven archetypes available in Orchestrator.

Table 7-1. Default Maven Archetypes

Archetype Description

com.vmware.o11n:o11n-plugin-archetype-simple com.vmware.o11n:o11n-plugin-archetype-simple

com.vmware.o11n:o11n-package-archetype A content-only Maven project, which can be used to keep
packages in source form for better interaction with RCS,
diff, post-processing, and so on.

com.vmware.o11n:o11n-client-archetype-rest A simple command-line tool, which communicates with the
Orchestrator REST API and calls a workflow.

com.vmware.o11n:o11n-plugin-archetype-inventory A plug-in that demonstrates inventory use. The plug-in
implements a repository, an adapter, and a factory for a
single type. The inventory is stored in a file on a disk.

Developing with VMware vRealize Orchestrator

VMware, Inc. 301

Table 7-1. Default Maven Archetypes (continued)

Archetype Description

com.vmware.o11n:o11n-archetype-inventory-annotation A plug-in whose vso.xml descriptor is generated on top of
annotations.

com.vmware.o11n:o11n-archetype-spring A plug-in that uses Spring-based SDK, provides a DI-
enabled environment, and adds higher-level services in
comparison to standard plug-in APIs.

com.vmware.o11n:o11n-plugin-archetype-modeldriven An archetype that generates a plug-in skeleton for building
plug-ins with ModelDriven.

Maven-Based Plug-In Development Best Practices

You can improve the process for delivering Orchestrator plug-ins created with Maven by
performing a set of tasks.

Using a Repository Manager

If you are creating plug-ins in a larger organization, use an enterprise repository manager to set
up the default Orchestrator Appliance repository to be added as a proxy repository. Using a
central repository improves management and plug-in project collaboration. When you complete
the first build in the new repository, the repository manager caches the artifacts from the
Orchestrator Appliance repository and you can turn off the default repository.

Locking Workflows

After you verify that all workflows in your plug-in work as expected, lock them to prevent
unauthorized modifications. By locking workflows, you ensure that the basic functions of the
plug-in cannot be compromised. If users must modify a default workflow for a specific purpose,
they can create a copy of the original workflow and edit that copy.

There are two ways to produce release builds with locked workflows.

n Pass the -DallowedMask=vf parameter to Maven.

n Edit the pom.xml and change the value of the allowedMask parameter to vf.

<allowedMask>vf</allowedMask>

Using a Package-Signing Certificate

Use a self-signed certificate or a certificate signed by a Certificate Authority, to ensure the
integrity and authenticity of the plug-ins. Store the certificate in the keystore under the
_dunesrsa_alias_ alias, by importing it with the keytool in the JDK.

Developing with VMware vRealize Orchestrator

VMware, Inc. 302

There are two ways to specify the path to the keystore file and the keystore password.

n Define the -DkeystoreLocation and -DkeystorePassword command-line parameters for the
MAVEN_OPTS variable.

n Edit the pom.xml file to insert the values manually. For example,

<keystore>path to the keystore file</keystore>

<storepass>keystore password</storepass>

If no keystore is imported, the .package file is signed with the archetype.keystore file.

Developing with VMware vRealize Orchestrator

VMware, Inc. 303

	Developing with VMware vRealize Orchestrator
	Contents
	Developing with VMware vRealize Orchestrator
	Developing Workflows
	Key Concepts of Workflows
	Workflow Parameters
	Workflow Attributes
	Workflow Schema
	Workflow Presentation
	Workflow Tokens

	Phases in the Workflow Development Process
	Best Practices for Developing Workflows
	Access Rights for the Orchestrator Client
	Testing Workflows During Development
	Creating and Editing a Workflow
	Create a Workflow
	Edit a Workflow
	Edit a Workflow from the Standard Library
	Workflow Editor Tabs

	Provide General Workflow Information
	Defining Attributes and Parameters
	Define Workflow Parameters
	Define Workflow Attributes
	Attribute and Parameter Naming Restrictions

	Workflow Schema
	View Workflow Schema
	Building a Workflow in the Workflow Schema
	Edit a Workflow Schema
	Copy Workflow Schema Elements
	Promote Input and Output Parameters
	Modify Search Results

	Schema Elements
	Schema Element Properties
	Edit the Global Properties of a Schema Element
	Schema Element Properties Tabs

	Links and Bindings
	Logical Flow of a Workflow
	Element Links
	Create Standard Path Links
	Data Flow of a Workflow
	Element Bindings
	Define Element Bindings

	Decisions
	Create Decision Element Links
	Delete a Linked Decision Element
	Create Workflow Branches Using Decisions

	Exception Handling
	Create Exception Bindings

	Using Error Handlers
	Add an Error Handler to a Workflow
	Add a Global Error Handler to a Workflow

	Foreach Elements and Composite Types
	Define a Foreach Element
	Define a Composite Type in a Foreach Element

	Add a Switch Activity to a Workflow

	Developing Plug-Ins
	Overview of Plug-Ins
	Structure of an Orchestrator Plug-In
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions
	File Structure of the Plug-In

	Orchestrator Plug-In API Reference
	IAop Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	PluginExecutionException Class
	PluginOperationException Class
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Best Practices for Orchestrator Plug-In Development
	Approaches for Building Orchestrator Plug-Ins
	Bottom-Up Plug-In Development
	Top-Down Plug-In Development

	Types of Orchestrator Plug-Ins
	Plug-Ins for Services
	Plug-Ins for Systems
	Plug-Ins for Object-Oriented Systems
	Plug-Ins for Resource-Oriented Systems

	Plug-In Implementation
	Project Structure
	Project Internals
	Workflow Internals
	Workflows and Actions
	Workflow Presentation

	Recommendations for Orchestrator Plug-In Development
	Documenting Plug-In User Interface Strings and APIs

	Obtaining Input Parameters from Users When a Workflow Starts
	Creating the Input Parameters Dialog Box In the Presentation Tab
	Create the Presentation of the Input Parameters Dialog Box

	Setting Parameter Properties
	Set Parameter Properties
	Workflow Input Parameter Properties
	Predefined Constant Values for OGNL Expressions

	Requesting User Interactions While a Workflow Runs
	Add a User Interaction to a Workflow
	Set the User Interaction security.group Attribute
	Set the timeout.date Attribute to an Absolute Date
	Calculate a Relative Timeout for User Interactions
	Set the timeout.date Attribute to a Relative Date
	Define the External Inputs for a User Interaction
	Define User Interaction Exception Behavior
	Create the Input Parameters Dialog Box for the User Interaction
	Respond to a Request for a User Interaction

	Calling Workflows Within Workflows
	Workflow Elements that Call Workflows
	Propagate Workflow Changes to other Workflows
	Propagate the Input Parameters and Presentation of a Child Workflow to the Parent Workflow

	Call a Workflow Synchronously
	Call a Workflow Asynchronously
	Schedule a Workflow
	Prerequisites for Calling a Remote Workflow from Within Another Workflow
	Call Several Workflows Simultaneously

	Running a Workflow on a Selection of Objects
	Implement the Start Workflows in a Series and Start Workflows in Parallel Workflows

	Developing Long-Running Workflows
	Set a Relative Time and Date for Timer-Based Workflows
	Create a Timer-Based Long-Running Workflow
	Create a Trigger Object
	Create a Trigger-Based Long-Running Workflow

	Configuration Elements
	Create a Configuration Element

	Validating Workflows
	Validate a Workflow and Fix Validation Errors

	Debugging Workflows
	Debug a Workflow
	Example Workflow Debugging

	Running Workflows
	Run a Workflow in the Workflow Editor
	Run a Workflow

	Resuming a Failed Workflow Run
	Set the Behavior for Resuming a Failed Workflow Run
	Set Custom Properties for Resuming Failed Workflow Runs
	Resume a Failed Workflow Run

	Generate Workflow Documentation
	Use Workflow Version History
	Develop a Simple Example Workflow
	Create the Simple Workflow Example
	Create the Schema of the Simple Workflow Example
	Create the Simple Workflow Example Zones
	Define the Parameters of the Simple Workflow Example
	Define the Simple Workflow Example Decision Bindings
	Bind the Action Elements of the Simple Workflow Example
	Simple Workflow Example Action Element Bindings

	Bind the Simple Workflow Example Scripted Task Elements
	Simple Workflow Example Scriptable Task Element Bindings

	Define the Simple Workflow Example Exception Bindings
	Set the Read-Write Properties for Attributes of the Simple Workflow Example
	Set the Simple Workflow Example Parameter Properties
	Set the Layout of the Simple Workflow Example Input Parameters Dialog Box
	Validate and Run the Simple Workflow Example

	Develop a Complex Workflow
	Create the Complex Workflow Example
	Create a Custom Action for the Complex Workflow Example
	Create the Schema of the Complex Workflow Example
	Create the Complex Workflow Example Zones
	Define the Parameters of the Complex Workflow Example
	Define the Bindings for the Complex Workflow Example
	Complex Workflow Example Bindings

	Set the Complex Workflow Example Attribute Properties
	Create the Layout of the Complex Workflow Example Input Parameters
	Validate and Run the Complex Workflow Example

	Scripting
	Orchestrator Elements that Require Scripting
	Limitations of the Mozilla Rhino Implementation in Orchestrator
	Using the Orchestrator Scripting API
	Access the Scripting Engine from the Workflow Editor
	Access the Scripting Engine from the Action or Policy Editor
	Access the Orchestrator API Explorer
	Use the Orchestrator API Explorer to Find Objects
	JavaScript Objects in the API Explorer

	Writing Scripts
	Color Coding of Scripting Keywords

	Add Parameters to Scripts
	Accessing the Orchestrator Server File System from JavaScript and Workflows
	Access the Server File System Using the System.getTempDirectory Method

	Accessing Java Classes from JavaScript
	Accessing Operating System Commands from JavaScript

	Using XPath Expressions with the vCenter Server Plug-In
	Using XPath Expressions with the vCenter Server Plug-In

	Exception Handling Guidelines
	Orchestrator JavaScript Examples
	Basic Scripting Examples
	Email Scripting Examples
	File System Scripting Examples
	LDAP Scripting Examples
	Logging Scripting Examples
	Networking Scripting Examples
	Workflow Scripting Examples

	Developing Actions
	Reusing Actions
	Access the Actions View
	Components of the Actions View
	Creating Actions
	Create an Action
	Find Elements That Implement an Action
	Action Coding Guidelines
	Basic Action Guidelines
	Action Naming Guidelines
	Action Parameter Guidelines

	Use Action Version History
	Restore Deleted Actions

	Creating Resource Elements
	View a Resource Element
	Import an External Object to Use as a Resource Element
	Edit the Resource Element Information
	Save a Resource Element to a File
	Update a Resource Element
	Add a Resource Element to a Workflow

	Creating Packages
	Create a Package

	Developing Plug-Ins
	Overview of Plug-Ins
	Structure of an Orchestrator Plug-In
	Exposing an External API to Orchestrator
	Components of a Plug-In
	Role of the vso.xml File
	Roles of the Plug-In Adapter
	Roles of the Plug-In Factory
	Role of Finder Objects
	Role of Scripting Objects
	Role of Event Handlers

	Contents and Structure of a Plug-In
	Defining the Application Mapping in the vso.xml File
	Format of the vso.xml Plug-In Definition File
	Naming Plug-In Objects
	Plug-In Object Naming Conventions
	File Structure of the Plug-In

	Orchestrator Plug-In API Reference
	IAop Interface
	IDynamicFinder Interface
	IPluginAdaptor Interface
	IPluginEventPublisher Interface
	IPluginFactory Interface
	IPluginNotificationHandler Interface
	IPluginPublisher Interface
	WebConfigurationAdaptor Interface
	PluginTrigger Class
	PluginWatcher Class
	QueryResult Class
	SDKFinderProperty Class
	PluginExecutionException Class
	PluginOperationException Class
	HasChildrenResult Enumeration
	ScriptingAttribute Annotation Type
	ScriptingFunction Annotation Type
	ScriptingParameter Annotation Type

	Elements of the vso.xml Plug-In Definition File
	module Element
	description Element
	deprecated Element
	url Element
	installation Element
	action Element
	finder-datasources Element
	finder-datasource Element
	inventory Element
	finders Element
	finder Element
	properties Element
	property Element
	relations Element
	relation Element
	id Element
	inventory-children Element
	relation-link Element
	events Element
	trigger Element
	trigger-properties Element
	trigger-property Element
	gauge Element
	scripting-objects Element
	object Element
	constructors Element
	constructor Element
	Constructor parameters Element
	Constructor parameter Element
	attributes Element
	attribute Element
	methods Element
	method Element
	example Element
	code Element
	Method parameters Element
	Method parameter Element
	singleton Element
	enumerations Element
	enumeration Element
	entries Element
	entry Element

	Best Practices for Orchestrator Plug-In Development
	Approaches for Building Orchestrator Plug-Ins
	Bottom-Up Plug-In Development
	Top-Down Plug-In Development

	Types of Orchestrator Plug-Ins
	Plug-Ins for Services
	Plug-Ins for Systems
	Plug-Ins for Object-Oriented Systems
	Plug-Ins for Resource-Oriented Systems

	Plug-In Implementation
	Project Structure
	Project Internals
	Workflow Internals
	Workflows and Actions
	Workflow Presentation

	Recommendations for Orchestrator Plug-In Development
	Documenting Plug-In User Interface Strings and APIs

	Creating Plug-Ins by Using Maven
	Create an Orchestrator Plug-In with Maven from an Archetype
	Maven Archetypes
	Maven-Based Plug-In Development Best Practices

