
Using the VMware 
vRealize Orchestrator 
Client

19 NOVEMBER 2021
vRealize Orchestrator 8.6



You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright 
©

 2008-2021 VMware, Inc. All rights reserved. Copyright and trademark information.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 2

https://docs.vmware.com/
https://docs.vmware.com/copyright-trademark.html


Contents

1 Using the VMware vRealize Orchestrator Client 6

2 Introduction to the vRealize Orchestrator Client 7
vRealize Orchestrator Client Usage Dashboard 8

Content Organization in the vRealize Orchestrator Client 8

Create Folders or Subfolders 9

Move Objects and Folders 10

Delete Folders or Subfolders 11

3 Setting Up the vRealize Orchestrator Client 12
vRealize Orchestrator Roles and Groups 12

Assign Roles in the vRealize Orchestrator Client 14

Configure vRealize Orchestrator Client Roles in vRealize Automation 14

Create Groups in the vRealize Orchestrator Client 15

vRealize Orchestrator Object Version History 16

Restore a Workflow to an Earlier Version 16

Visual Comparison Between Workflow Versions 17

Reset Your vRealize Orchestrator Content Inventory to a Previous State with Git 18

4 vRealize Orchestrator Use Cases 19
How to Integrate Amazon Web Services in vRealize Orchestrator by Using Python 19

Create Initial Python Script 20

Create the Amazon Web Services Action 21

Debug the Amazon Web Services Action 22

Update the Amazon Web Services Action 25

How Can I Use Git Branching to Manage My vRealize Orchestrator Object Inventory 26

Prepare Your GitLab Environment 27

Configure a Connection to a Git Repository 27

Push Changes to a Git Repository 29

How Can I Use Third-Party Modules to Call the vRealize Automation Project API 31

Create a Python Script That Calls the vRealize Automation Project API 31

Create a Node.js Script That Calls the vRealize Automation Project API 33

Create a PowerShell Script That Calls the vRealize Automation Project API 35

5 Managing Workflows 39
Standard Workflows in the vRealize Orchestrator Workflow Library 40

Create Workflows 40

Edit Workflows and Actions from the Parent Workflow 40

VMware, Inc. 3



vRealize Orchestrator Input Form Designer 41

Create the Workflow Input Parameters Dialog Box in the vRealize Orchestrator Client 41

Input Parameter Properties in the vRealize Orchestrator Client 42

Using Actions to Validate vRealize Orchestrator Workflow Inputs 43

Requests for User Interaction in the vRealize Orchestrator Client 44

Schedule Workflows 45

Edit Scheduled Task in the vRealize Orchestrator Client 45

Find Object References in Workflows 46

6 Managing Actions 48
Create Actions 48

Running and Debugging Actions 49

Run Actions 49

Debug Actions 50

Core Concepts for Python, Node.js, and PowerShell Scripts 51

Runtime Limits for Python, Node.js, and PowerShell Scripts 52

7 Managing Configuration Elements 54
Create Configuration Elements 54

8 Managing Policies 56
Create and Apply Policies 56

Policy Elements 57

Manage Policy Runs 58

9 Managing Resource Elements 59

10 Managing Packages 60
Create Packages 60

Export Packages 61

Import Packages 62

11 Troubleshooting in the vRealize Orchestrator Client 64
Metric Data in the vRealize Orchestrator Client 64

Profile Workflows in the vRealize Orchestrator Client 64

Using the vRealize Orchestrator System Dashboard 65

Using Workflow Token Replay in the vRealize Orchestrator Client 66

Validating vRealize Orchestrator Workflows 67

Validate a Workflow and Fix Validation Errors in the vRealize Orchestrator Client 67

Debug Workflow Scripts in the vRealize Orchestrator Client 68

Debug Workflows by Schema Element 69

Using the VMware vRealize Orchestrator Client

VMware, Inc. 4



Configuring a Photon OS Container for Python Packages 70

Using the VMware vRealize Orchestrator Client

VMware, Inc. 5



Using the VMware vRealize 
Orchestrator Client 1
Using the VMware vRealize Orchestrator Client provides information about the workflow 
automation features and functionality of the vRealize Orchestrator Client.

Intended Audience

This information is intended for experienced system administrators who are looking for a tool that 
can help them to run and manage vRealize Orchestrator workflows.

VMware, Inc. 6



Introduction to the vRealize 
Orchestrator Client 2
Use the vRealize Orchestrator Client to manage vRealize Orchestrator services and objects.

You can access the vRealize Orchestrator Client at https://your_orchestrator_FQDN/
orchestration-ui. 

UI element Description

Dashboard Use the vRealize Orchestrator Client Dashboard and profiling feature to gather useful 
metric data about your vRealize Orchestrator environment and workflows.

Workflows Create, edit, schedule, run, and delete workflows.

Actions Create, edit, and delete actions. The action editor supports automatic completion for 
common script elements included in the vRealize Orchestrator API Explorer.

Policies Create, edit, run, and delete policies.

Packages Create, delete, export, and import packages containing vRealize Orchestrator objects.

Configurations Create, run, and delete configuration elements.

Resources Export, import, and update resource elements.

Groups Users with administrator rights can assign roles to users in the vRealize Orchestrator Client 
and add them to groups.

Audit Logs View the different events, such as when an object is created, that are recorded in the 
vRealize Orchestrator Client.

Git Repositories Create an integration to a Git repository and use the integration to manage the 
development of workflows and other vRealize Orchestrator objects across multiple 
deployments.

See How Can I Use Git Branching to Manage My vRealize Orchestrator Object Inventory.

Deleted Items Restore deleted vRealize Orchestrator Client objects, such as workflows, actions, policies, 
configuration elements, and resource elements.

API Explorer Explore the API commands available in the vRealize Orchestrator Client.

Note   The vRealize Orchestrator Client communicates with the vRealize Orchestrator REST 
API through a REST proxy.

This chapter includes the following topics:

n vRealize Orchestrator Client Usage Dashboard

n Content Organization in the vRealize Orchestrator Client

VMware, Inc. 7



vRealize Orchestrator Client Usage Dashboard

The vRealize Orchestrator Client dashboard provides a useful tool for monitoring, managing, and 
troubleshooting vRealize Orchestrator Client workflows.

Information on the vRealize Orchestrator Client dashboard is spread among five panels.

Window Description

Workflow runs Provides visual data about the number of running, waiting, 
and failed workflow runs.

Favorite workflows Displays workflows added to favorites.

Waiting for input Displays pending workflow runs that require further user 
interaction. These workflows are also displayed in the 
notifications menu in the upper-right corner of the UI.

Recent workflow runs Manage recent workflow runs. Shows the name, state, 
start date, and end date of the workflow run.

Requiring Attentions Displays failed workflow runs and workflow run 
performance metrics.

Content Organization in the vRealize Orchestrator Client

Manage how your vRealize Orchestrator object inventory is displayed in the vRealize Orchestrator 
Client.

The vRealize Orchestrator Client supports three different view types for objects such as workflows, 
actions, policies, resources, and configurations: Card View, List View, and Tree View. You can 
change the current view type from the top-right corner of the page.

Card View

The Card View is the default view type used in the vRealize Orchestrator Client. Information on the 
individual inventory object, such as a workflow, is displayed in a separate card element.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 8



List View

List View displays information on your vRealize Orchestrator objects organized as a list. For more 
information on the actions you can perform on the object, click the vertical ellipses icon to the left 
of the object.

Tree View

You can organize your object inventory under hierarchical folders in Tree View. Each vRealize 
Orchestrator object type has a root level folder. You cannot create new objects, such as 
workflows, under the root folder. You must create separate folders organized under the root 
folder. Each folder includes tools to help you manage its content, such as a content filter.

Note   Each folder has a separate content filter. You cannot filter content across folders.

For more information on folders, see Create a Folder or Subfolder in the vRealize Orchestrator 
Client.

Note   When you select an object from the Tree View, it opens in a read-only mode. To edit the 
object content, such as workflow variables or the workflow schema, click Edit from the top options 
menu.

Create a Folder or Subfolder in the vRealize Orchestrator Client

Organize your vRealize Orchestrator objects by using a hierarchical folder structure.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 9



You can create folders and subfolders to organize the following types of vRealize Orchestrator 
objects:

n Workflows

n Actions

n Policies

n Configuration elements

n Resource elements

Procedure

1 Log in to the vRealize Orchestrator Client.

2 From the left navigation pane, select an object page, such as Workflows.

3 From the top-right, select the tree view icon ( ).

4 (Optional) To create a subfolder, select a parent folder from the tree view on the left.

5 Click New Folder.

6 Enter a name and description, and click Save.

7 Add objects or subfolders to the newly created folder.

8 (Optional) To edit the folder name, select Actions > Edit.

Move Objects and Folders in the vRealize Orchestrator Client

Reorganize your vRealize Orchestrator content by moving the content into another folder.

You cannot move actions between action modules, or move any objects to a root folder. The root 
folder includes the main object folders and subfolders, but cannot be used to store objects.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 From the left navigation pane, select an object page, such as Workflows.

3 From the top-right, select the tree view icon ( ).

4 Expand the tree view, and select the object or folder you want to move.

5 Drag the object or folder to its new parent folder.

Note   You can also move objects into new folders directly from the object editor. On the 
Summary tab, click Select Folder, and select the new parent folder for the object. Another 
move option is to select objects from the table on the folder page. This option is useful for 
performing batch move operations that include multiple vRealize Orchestrator objects.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 10



Delete a Folder or Subfolder in the vRealize Orchestrator Client

Delete obsolete folders or subfolders from your vRealize Orchestrator Client.

You cannot delete the corresponding root-level folder of each vRealize Orchestrator object type.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 From the left navigation pane, select an object page, such as Workflows.

3 From the top-right, select the tree view icon ( ).

4 Tick the check box next to the folder you want to delete.

Note   To delete a subfolder, select the parent folder from the tree view and then tick the 
check box.

5 Click Delete.

6 If the selected folder is empty.

a Confirm that you want to delete to folder.

b Click Delete.

7 If the selected folder contains vRealize Orchestrator Client objects or subfolders.

a Confirm that you want to delete the folder.

b Click Delete.

You receive the message Could not delete item 'your_folder_name': Folder 
'your_folder_name' is not empty.

c To delete the folder and all its content, click Force delete.

d Confirm that you want to delete the folder, and click Delete.

Note   You can also perform a batch delete by selecting multiple objects from the table 
included in the folder menu.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 11



Setting Up the vRealize 
Orchestrator Client 3
To take full advantage of the functionality of the vRealize Orchestrator Client, you must configure 
your user permissions and learn how you can use version history to manage your objects.

This chapter includes the following topics:

n vRealize Orchestrator Roles and Groups

n vRealize Orchestrator Object Version History

vRealize Orchestrator Roles and Groups

vRealize Orchestrator administrators can set permissions that control access to features and 
content in the vRealize Orchestrator Client. Access rights are separated into user roles and group 
permissions.

Roles control what vRealize Orchestrator Client features users can view and use. Access to the role 
management functionality depends on the license type of your vRealize Orchestrator environment.

Table 3-1. License-Based Access to vRealize Orchestrator Role Management

License

Authentication

vSphere vRealize Automation

vSphere Role management is not supported. Groups 
support only Run permissions.

vRealize Automation Manage roles in the vRealize Orchestrator 
Client.

See Assign Roles in the vRealize Orchestrator 
Client.

Manage roles through Identity and Access 
Management in vRealize Automation.

See Configure vRealize Orchestrator Client 
Roles in vRealize Automation.

Group permissions control what vRealize Orchestrator Client content users can view and use, 
such as workflows, actions, policies, configuration elements, and resource elements. Access to 
preconfigured system vRealize Orchestrator content like standard workflows and actions is shared 
among all users, unless configured otherwise through group permissions.

VMware, Inc. 12



Access rights of users with administrator and viewer roles are not restricted by group permissions. 
Access rights of users without an assigned role and users with a workflow designer role depend 
on the group assigned to them. You can extend the access rights of these users by modifying 
their group permissions. In this way, you can organize users into common projects. For example, 
you can create a group that includes users working on developing a custom vRealize Orchestrator 
plug-in and allow them to modify only content that is specific to their group.

Table 3-2. vRealize Orchestrator User Roles and Groups Permissions

Role Access Rights

Administrator Administrators can access all vRealize Orchestrator Client features and content, including the 
content created by specific groups. Responsible for setting user roles, creating and deleting groups, 
and adding users to groups. Administrators are not limited by group permissions.

Note   Tenant administrators from vRealize Automation environments used to authenticate vRealize 
Orchestrator have Administrator rights by default.

Viewer Viewers have read-only access to all content in the vRealize Orchestrator Client, but cannot create, 
edit, run, or export content. Viewers can also see all groups and group content. Viewers are not 
limited by group permissions.

Group Permissions

No assigned group Run Run and edit

Workflow 
Designer

n View system content.

n View and run own runs.

n Create, run, edit, and 
delete own content.

n View system content

n View and run own runs.

n Create, run, edit, and 
delete own content.

n Add own content to the 
group.

n Run group content, but 
cannot edit it.

n View system content.

n View and run own runs.

n Create, run, edit, and 
delete own content.

n Add own content to the 
group.

n Run and edit group 
content.

Note   Not available for 
vRealize Orchestrator instances 
authenticated with vSphere.

User without an 
assigned role

n View own runs. n View and run own runs.

n View and run group 
content.

n View and run own runs.

n View and run group 
content.

Note   To be able to create, 
edit, and add content, users in 
this group must be assigned a 
Workflow Designer role.

Note   Not available for 
vRealize Orchestrator instances 
authenticated with vSphere.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 13



Assign Roles in the vRealize Orchestrator Client

As an administrator, you can add users to the vRealize Orchestrator Client and set what features 
they can view and use.

Role management controls the access of users from the vRealize Orchestrator identity provider 
to the features of the vRealize Orchestrator Client. Role management covers both the vRealize 
Orchestrator Client user interface and the API functionality.

Note   Client-side role management is only available for vRealize Orchestrator instances 
authenticated with vSphere that use a vRealize Automation license. For information on assigning 
roles to vRealize Orchestrator authenticated with vRealize Automation, see Configure vRealize 
Orchestrator Client Roles in vRealize Automation.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

2 Navigate to Administration > Roles Management.

3 Click Add.

4 Search for the user or group you want to add to the vRealize Orchestrator Client.

5 Select the user's role. For more information on roles, see vRealize Orchestrator Roles and 
Groups.

6 Click Save.

Configure vRealize Orchestrator Client Roles in vRealize Automation

You can assign service roles for the vRealize Orchestrator Client in the Identity & Access 
Management page in vRealize Automation. Service roles can be assigned for the embedded 
vRealize Orchestrator Client and standalone vRealize Orchestrator instances authenticated with 
vRealize Automation.

vRealize Orchestrator service roles manage what features of the embedded vRealize Orchestrator 
Client users can access. For more information vRealize Orchestrator roles, see vRealize 
Orchestrator Roles and Groups.

Note   Standalone vRealize Orchestrator instances authenticated with vSphere that use a vRealize 
Automation license can assign roles directly in the vRealize Orchestrator Client. See Assign Roles 
in the vRealize Orchestrator Client.

Prerequisites

n Verify that appropriate users and groups are imported from a valid vIDM instance.

n Before assigning a vRealize Orchestrator service role to your user, verify that your user has 
an assigned organization role in vRealize Automation. See, Administering Users and Groups in 
vRealize Automation in Administering vRealize Automation.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 14



Procedure

1 From the top-right header drop-down menu, select the Identity & Access Management 
option.

2 On the Active Users tab, search for the email address of the user you want to assign to 
vRealize Orchestrator.

3 Select the check box next to the user, and click Edit Roles.

4 Click Add Service Access.

5 From the left drop-down menu, select Orchestrator.

6 From the right drop-down menu, select the role you want to assign to the user.

7 Click Save.

Create Groups in the vRealize Orchestrator Client

As an administrator, you can use groups to set what vRealize Orchestrator content users can view 
and access in the vRealize Orchestrator Client.

You can use the vRealize Orchestrator Client to set group permissions to vRealize Orchestrator 
workflows, actions, policies, configuration elements, resource elements, and packages.

Note   Users from vRealize Orchestrator instances authenticated with vSphere, can only have Run 
group permissions.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

2 Navigate to Administration > Groups.

3 Click New Group.

4 On the Summary tab, add a name and description for the group.

5 On the Users tab, click Add.

a Search for a user you want to add to the group.

b Assign group permissions to the user.

c Click Add.

6 On the Items tab, add vRealize Orchestrator objects to the group.

Note   You can also add an object to existing groups when that object is being created in 
the vRealize Orchestrator Client. To add the object, select the group from the Accessible by 
drop-down menu on the Summary/General tab of the object editor.

7 Click Save.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 15



vRealize Orchestrator Object Version History

The vRealize Orchestrator Client maintains a version history record for each vRealize Orchestrator 
object. Using the version history, you can compare different vRealize Orchestrator object versions 
and revert to a previous version.

vRealize Orchestrator creates a version history record for each vRealize Orchestrator object when 
you save the object. Subsequent changes to vRealize Orchestrator objects create a new version 
history record. The previous versions history records are preserved and can be used to track 
changes to the object and revert the object to a previous version. Reverting an object to a 
previous version creates a new version history record.

The vRealize Orchestrator Client tracks the version history of the following vRealize Orchestrator 
objects:

n Workflows

n Actions

n Packages

n Policies

n Resource elements

n Configuration elements

Note   Generated workflows do not appear in the workflow version history. For example, the 
workflows generated by the Generate CRUD workflows for a table workflow do not appear on 
the Version History tab and cannot be pushed to any configured Git repositories. To include these 
workflows in the vRealize Orchestrator version history, duplicate the generated workflows.

You can access the version history of an object from the Version History tab of the object editor 
page. If you are attempting to edit an object at the same time as another user, a merge conflict 
might occur. To resolve the merge conflict, click Resolve to the right of the error message. On the 
Resolve Conflicts window you have three options:

n Use theirs. Resolve the merge conflict by using the changes made by the other user.

n Use ours. Resolve the merge conflict by using your changes.

n Resolve. Resolve the merge conflict by editing the displayed change model. If the provided 
model is invalid, this option is unavailable.

Restore a Workflow to an Earlier Version

You can restore a workflow to a previously saved version.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows, and select a workflow.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 16



3 Select the Version History tab.

4 To view a comparison between the versions, select a workflow version and select another 
version from the Diff against drop-down menu.

A window displays the differences between the current workflow version and the selected 
workflow version.

5 To restore the workflow to another version , click Restore.

The workflow state is reverted to the state of the selected version.

Note   You can also restore a workflow version from the graphic difference tool view. See 
Visual Comparison Between Workflow Versions.

Visual Comparison Between Workflow Versions

Compare changes between workflow versions with the graphic difference tool.

By default, the vRealize Orchestrator Version History displays differences between workflow 
versions in a YAML form. You can also perform a visual comparison between different workflow 
versions. You can view changes in:

n The general workflow information, such as version number and workflow description.

n The variables used in the workflow.

n The input and output parameters of the workflow.

n The workflow schema.

Prerequisites

Create a workflow.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows, and select one of your workflows.

3 Edit the content of the workflow.

For example, you can add an extra Scriptable task element on the Schema tab.

4 Click Save.

5 Select the Version History tab.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 17



6 From the top-right, select Diff Visually.

You can now perform a visual comparison between two selected workflow versions. You can 
select which versions to compare from the Version drop-down menu.

7 (Optional) You can restore a workflow to another version by selecting Use Version.

Reset Your vRealize Orchestrator Content Inventory to a Previous 
State with Git

By using an earlier Git commit, you can reset your vRealize Orchestrator content to an earlier 
state.

You can reset your vRealize Orchestrator content to a previous state by selecting a specific 
commit.

Prerequisites

n Configure a connection to a GitHub or GitLab repository. See Configure a Connection to a Git 
Repository.

n Push a local change set to the configured Git repository.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Administration > Git History.

3 Select a change set you want to reset to and click Reset to this.

4 Confirm that you want to reset to this specific commit and click Ok.

The vRealize Orchestrator content inventory is reset to the state specified in the commit. 
Relevant vRealize Orchestrator content is reverted to a previous version. If the content did not 
exist when the commit was pushed, it is removed from the inventory.

What to do next

To restore the vRealize Orchestrator inventory to the latest state saved to the Git repository, 
perform a Pull command from the Git History window.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 18



vRealize Orchestrator Use Cases 4
These use cases demonstrate part of the functionality of the vRealize Orchestrator platform.

These use cases present example values only. Your own environment structure and naming 
conventions can vary.

This chapter includes the following topics:

n How to Integrate Amazon Web Services in vRealize Orchestrator by Using Python

n How Can I Use Git Branching to Manage My vRealize Orchestrator Object Inventory

n How Can I Use Third-Party Modules to Call the vRealize Automation Project API

How to Integrate Amazon Web Services in vRealize 
Orchestrator by Using Python

This vRealize Orchestrator use case shows an example of how you can use Python to expand the 
capabilities of your vRealize Orchestrator deployment.

You can use the following runtimes in your action and workflow scripts:

n Python 3.7

n Node.js 14

n PowerCLI 11/Powershell 6.2

n PowerCLI 12.3.0/Powershell 7.1

Note   The PowerCLI runtime includes PowerShell and the following modules: 
VMware.PowerCLI, PowerNSX, PowervRA.

Important   You can only use the new runtimes if your vRealize Orchestrator deployment uses a 
vRealize Automation license.

VMware, Inc. 19



This use case demonstrates how you can create a Python script that calls up EC2 instances in 
Amazon Web Services (AWS).

Important   Before you begin developing your custom script, verify that you are familiar with the 
core concepts of using Python, Node.js, and PowerShell scripts, in vRealize Orchestrator. See 
Core Concepts for Python, Node.js, and PowerShell Scripts .

Procedure

1 Create Initial Python Script

On your local machine, create your Python script and package the script and a boto3 library 
as a ZIP folder.

2 Create the Amazon Web Services Action

Create a vRealize Orchestrator action that uses that uses your Python script.

3 Debug the Amazon Web Services Action

The original version of the Python script has a deliberate built-in error, so you can learn how 
to debug your script.

4 Update the Amazon Web Services Action

Import the updated Python script, and run the action again.

Create Initial Python Script

On your local machine, create your Python script and package the script and a boto3 library as a 
ZIP folder.

Prerequisites

n Download and install Python 3. See the Python Downloads page.

n Download and Install Visual Studio Code. See the Visual Studio Code download page.

n Verify that you have installed the Python extension for Visual Studio Code. See the Visual 
Studio Marketplace.

Procedure

1 On your local machine, create a vro-python-aws folder, and install the boto3 Python SDK on 

it.

mkdir vro-python-aws
cd vro-python-aws
mkdir lib
pip install boto3 -t lib/

Using the VMware vRealize Orchestrator Client

VMware, Inc. 20

https://www.python.org/downloads/
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=ms-python.python


2 Open an editor, and create the main Python script. For this use case, you are using Visual 
Studio Code.

import boto3
 
def handler(context, inputs):
    ec2 = boto3.resource('ec2')
    filters = [{
        'Name': 'instance-state-name',
        'Values': ['running']
    }]
  
    instances = ec2.instances.filter(Filters=filters)
    for instance in instances:
        print('Instance: ' + instance.id)

This Python script lists all running EC2 instances in a given region.

3 Save the created script as a main.py file in the vro-python-aws folder.

4 Log in to a command-line interface.

5 Navigate to the vro-python-aws folder.

cd vro-python-aws

6 Create a ZIP package that contains the Python script.

zip -r --exclude=*.zip -X vro-python-aws.zip .

Note   You can also create the ZIP package by using a ZIP utility tool, such as 7-Zip.

Results

You have created the base Python script, and prepared it for import into your vRealize 
Orchestrator deployment.

Create the Amazon Web Services Action

Create a vRealize Orchestrator action that uses that uses your Python script.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Actions.

3 Click New Action.

4 On the General tab, enter a name, module, and version number for the action.

5 On the Script tab, select Python 3.7 as the runtime, and Zip as the script type.

6 Click Import.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 21



7 Browse to the vro-python-aws folder, and select the ZIP package containing the Python 

script.

8 In the Entry handler text box, enter main.handler.

Note   The entry handler of the action is based on the main script in the imported ZIP package. 
Because the main script is located in a file called main.py, and a function called handler, 

the entry handler must be main.handler. If you have titled your main script file differently, 

change the entry handler value accordingly.

9 Save the action, and click Run.

The action run encounters an error.

10 Select the Logs tab.

The logs of the action run display a "botocore.exceptions.NoRegionError: You must 
specify a region." error message. This is expected behavior, as the initial Python script 

does not define a region.

What to do next

Debug the Python script. See Debug the Amazon Web Services Action.

Debug the Amazon Web Services Action

The original version of the Python script has a deliberate built-in error, so you can learn how to 
debug your script.

Prerequisites

Sign in to your Amazon Web Services (AWS) account, and create a IAM user specifically for this 
use case scenario. See Creating an IAM User in Your AWS Account. The IAM user must have the 
following permissions:

"Effect": "Allow",
"Action": "ec2:DescribeInstances",
"Resource": "*"

Using the VMware vRealize Orchestrator Client

VMware, Inc. 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html


Procedure

1 Prepare the vRealize Orchestrator Appliance.

Caution   Do not debug scripts in your production vRealize Orchestrator deployment. Debug 
from a single node vRealize Orchestrator deployment, that you use for development and 
testing.

a Log in to the vRealize Orchestrator Appliance command line over SSH as root.

b Run the vracli dev tools command.

c You are prompted to confirm that you want to continue. Enter yes to continue, or no to 

cancel.

Important   By running the vracli dev tools command, you open the ports required to 

debug the Python script. You must leave the current SSH session open during the debug 
process.

2 Start the debug configuration.

a Log in to the vRealize Orchestrator Client.

b Open the AWS action, and click Debug.

The debug process begins, and the action run is suspended.

c Select the Debug Configuration tab.

The tab contains a .json configuration that you can remotely attach to your IDE to debug 

the Python script.

d Copy the configuration content manually, or click Copy To Clipboard.

3 Debug the Python script.

a Open Visual Studio Code.

b Open the vro-python-aws folder.

c From the top navigation pane, select Run > Open Configurations.

d Select Python file.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 23



e Leave the "version" and "configuration" attributes in their current positions, and paste 

the content of the .json configuration copied from the vRealize Orchestrator Client. The 

generated launch.json file must look similar to this:

{

    "version": "0.2.0",
    "configurations": [
        {
            "request": "attach",
            "port": 18281,
            "name": "vRO Python debug 8302f4c7-5beb-40da-848a-5003c0296f7b",
            "host": "es-sof-vc-vm-225-190.sof-mbu.eng.vmware.com",
            "type": "python",
            "pathMappings": [
              {
                "localRoot": "${workspaceFolder}",
                "remoteRoot": "/var/run/vco-polyglot/function"
            }
        ]
      }
    ]
  }

f Select the main.py script file, and add a breakpoint to the ec2 = boto3.resource('ec2') 

line.

g From the top navigation pane, select Run > Start Debugging.

h When the debugger reaches the breakpoint, perform a step over operation.

The debug run indicates that the Python script lacks a specified region, and AWS access 
key.

i Go back to the open vRealize Orchestrator Appliance session, and press Enter to close 

the ports you opened for this debug session.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 24



4 Add the missing information to the Python script.

a In Visual Studio Code, create a file called awsconfig that contains the AWS access key of 

the IAM user and the AWS region you want to ping with the Python script.

[default]
aws_access_key_id=your key ID
aws_secret_access_key=your secret access key
region=your-region

b Save awsconfig as a configuration (.cfg) file in the vro-python-aws folder.

c Open the main.py file, and modify it so the boto3 library can use the awsconfig.cfg file.

import boto3
 
import os
os.environ['AWS_CONFIG_FILE'] = os.getcwd() + '/awsconfig.cfg'
 
def handler(context, inputs):
    ec2 = boto3.resource('ec2')
    filters = [{
        'Name': 'instance-state-name',
        'Values': ['running']
    }]
  
    instances = ec2.instances.filter(Filters=filters)
    for instance in instances:
        print('Instance: ' + instance.id)

d Create a new ZIP package that contains the main.py file, awsconfig.cfg file, and boto3 

library.

zip -r --exclude=*.zip -X vro-python-aws.zip .

Note   You can also create the ZIP package by using a ZIP utility tool, such as 7-Zip.

Update the Amazon Web Services Action

Import the updated Python script, and run the action again.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Actions, and select the original Amazon Web Services (AWS) action.

3 (Optional) On the General tab, change the version number.

4 Remove the old ZIP package, and click Import.

5 Select the updated ZIP package.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 25



6 Save the action, and click Run.

7 After the action run finishes, select the Logs tab.

The logs display the EC2 instances queried by the 

action.

What to do next

Create a vRealize Orchestrator workflow that uses the updated AWS action as an Action element.

How Can I Use Git Branching to Manage My vRealize 
Orchestrator Object Inventory

Use branching to organize how you vRealize Orchestrator content is managed in your Git 
repository.

By using Git, you can increase the flexibility for your vRealize Orchestrator developers by 
providing a centralized repository. For example, you can use Git to manage the workflow 
development across multiple vRealize Orchestrator environments.

Note   To use Git to manage your object inventory, your vRealize Orchestrator deployment 
must use a vRealize Automation license. For more information, see vRealize Orchestrator Feature 
Enablement with Licenses in Installing and Configuring vRealize Orchestrator.

You can now push and pull objects to and from branches. You can use branching to manage the 
development of specific groups of vRealize Orchestrator objects, before they are merged back 
into your main branch.

In this use case, you are using a GitLab project to manage vRealize Orchestrator objects that 
use the Python runtime. This use case represents an example of the Git functionality in vRealize 
Orchestrator and does not represent the limits of the feature scope.

Note   If you are more familiar with GitHub, you can use a GitHub repository for this use case.

Procedure

1 Prepare Your GitLab Environment

Create a Git branch for your vRealize Orchestrator Python objects.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 26



2 Configure a Connection to a Git Repository

As an administrator, you can configure a connection between your vRealize Orchestrator 
deployment and a Git repository or project.

3 Push Changes to a Git Repository

Push your changes to local vRealize Orchestrator objects to your integrated Git repository. 
For this use case, we are pushing changes to a Python-based vRealize Orchestrator action to 
a specific Git branch.

Prepare Your GitLab Environment

Create a Git branch for your vRealize Orchestrator Python objects.

Prerequisites

Create a GitLab project for your vRealize Orchestrator environment. See Create a project.

Procedure

1 Log in to your GitLab account.

2 Navigate to your GitLab project.

3 On the left navigation pane, select Repository > Branches.

4 On the Overview tab, click New Branch.

5 Under Branch name, enter Python-branch.

6 Leave the Create from option as master.

7 Click Create branch.

You have created a branch for your Python-based vRealize Orchestrator objects.

Configure a Connection to a Git Repository

As an administrator, you can configure a connection between your vRealize Orchestrator 
deployment and a Git repository or project.

To use Git for management of your vRealize Orchestrator object inventory, you must configure a 
connection to your Git repository by using the vRealize Orchestrator Client.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 27

https://docs.gitlab.com/ee/user/project/working_with_projects.html#create-a-project


Prerequisites

n Verify that your vRealize Orchestrator environment uses a vRealize Automation license.

n Generate an access token for your GitLab project and copy it to your clipboard for use during 
the configuration process. See Creating a personal access token.

Note   For this use case, you are using a GitLab project. If you are more familiar with GitHub, 
you can use a GitHub repository. For information generating a GitHub token, see Creating a 
personal access token for the command line.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

2 Navigate to Administration > Git Repositories.

3 Click Add Repository.

4 Enter the URL address of your Git repository.

For example, https://gitlab.com/myusername/my-vro-repo.

Note   You can also establish a connection with the SSH protocol.

5 Enter the user name for your Git profile.

6 Enter the access token of your Git repository.

7 To validate the connection to the Git repository, click Validate.

8 (Optional) Change the name used to identify the repository in the vRealize Orchestrator Client.

9 (Optional) Add a short description for the connected Git repository.

10 To activate the connected Git repository, click Make active repository.

Note   Only one Git repository can be active at a time. You can change the active Git repository 
from the Git Repositories page.

11 Select the branch to which you want to push your changes. For this use case, you are using 
Python-branch. See Prepare Your GitLab Environment.

Note   You can change the selected Git branch at any time after you finish the initial Git 
configuration.

12 To finish the configuration process, click Save.

What to do next

Navigate back to the Git Repositories menu and confirm that the status of the repository is Active.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 28

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line


Push Changes to a Git Repository

Push your changes to local vRealize Orchestrator objects to your integrated Git repository. For this 
use case, we are pushing changes to a Python-based vRealize Orchestrator action to a specific Git 
branch.

You can push a local change set to a Git repository. Each change set can consist of one or more 
modified vRealize Orchestrator objects.

Note   The process of pushing and discarding change sets to a Git repository is not limited by 
group permissions. Therefore, a workflow developer from one group can push or discard local 
changes made by another developer.

Prerequisites

n Verify that you have created a Git branch. See Prepare Your GitLab Environment.

n Verify that you have configured a connection with a Git repository. See Configure a 
Connection to a Git Repository.

n Verify that your Git integration is set to push changes to the Python-branch Git branch.

n Create a Python-based vRealize Orchestrator object. For example, see How to Integrate 
Amazon Web Services in vRealize Orchestrator by Using Python.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Edit your Python action.

a Navigate to Library > Actions, and select your Python action.

b Make some minor changes to the action, such as changing the description.

c Save the action.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 29



3 Push your changes to the Git repository.

Note   You can also push local changes on a per object level by clicking the Version option 
displayed at the bottom of the object editor.

a Navigate to Administration > Git History.

Git History displays the current differences between the local version branch and the 
selected Git repository branch. You can expand the entry for any modified vRealize 
Orchestrator object to view the version differences.

Note   You can discard a local change set by select Discard all.

b Click Push.

c Enter a commit title.

d (Optional) Enter a short description for the commit.

e Select the changes to your Python action that you want to push to the Git repository.

4 To finish pushing the local change set to the Git repository, click Push.

What to do next

After you finish development in your Git branch, merge it with the main branch. See How to create 
a merge request.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 30

https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html
https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html


How Can I Use Third-Party Modules to Call the vRealize 
Automation Project API

This vRealize Orchestrator use case demonstrates how you can call up vRealize Automation 
Project API by using third-party modules.

You can use the following runtimes in your action and workflow scripts:

n Python 3.7

n Node.js 14

n PowerCLI 11/Powershell 6.2

n PowerCLI 12.3.0/Powershell 7.1

Note   The PowerCLI runtime includes PowerShell and the following modules: 
VMware.PowerCLI, PowerNSX, PowervRA.

In this use case, you learn how to create vRealize Orchestrator actions that use third-party 
dependency modules to connect to the vRealize Automation Project API.

Important   Before you begin developing your custom script, verify that you are familiar with the 
core concepts of using Python, Node.js, and PowerShell scripts, in vRealize Orchestrator. See 
Core Concepts for Python, Node.js, and PowerShell Scripts .

Create a Python Script That Calls the vRealize Automation Project 
API

Create a sample script that uses Python to call the vRealize Automation Project API.

Prerequisites

Verify that you have installed Python 3 and the PIP package installer. See Python Downloads page 
and Python Package Index.

Procedure

1 On your local machine, open a command-line shell.

2 Create a vro-python-vra folder.

mkdir vro-python-vra

3 Navigate to the vro-python-vra folder.

cd vro-python-vra

4 Create a Python script called handler.py.

touch handler.py

Using the VMware vRealize Orchestrator Client

VMware, Inc. 31

https://www.python.org/downloads/
https://pypi.org/project/pip/


The handler.py script must define one function that accepts two arguments, the context of 

the vRealize Orchestrator workflow run, and the bound vRealize Orchestrator inputs.

def handler(context, inputs):
    print('Hello, your inputs were ' + inputs)
    return None

Note   Using standard logging libraries, everything you log in the action that uses your 
script is also shown in the workflow log. The inputs and the return of your script must have 
corresponding input parameters and return types configured in the vRealize Orchestrator 
Client. For example, the vRAUrl input, in your script must have a corresponding input 

parameter called vRAUrl in the vRealize Orchestrator Client. Similarly, if your script returns 

a string value, the return type configured in the vRealize Orchestrator Client must also be a 
string type. If your action returns a complex object, you can use Properties or Composite Type 
return type.

5 Install the Python requests module.

Important   Third-party dependency modules must be installed in a root level folder in your 
main vro-python-vra script folder. For this use case, you create a lib folder for your requests 

module.

a Create a lib folder.

mkdir lib

b Install the requests module.

pip3 install requests -t lib/

6 Add the requests module to the handler.py script.

import requests
 
def handler(context, inputs):
    print('Hello, your inputs were ' + inputs)
    return None

7 Create a GET request to the vRealize Automation Project API.

token = ''
vRAUrl = ''
r = requests.get(vRAUrl + '/iaas/api/projects', headers={'Authorization': 'Bearer ' + 
token})
 
 
print('Got response ' + r.text)

Using the VMware vRealize Orchestrator Client

VMware, Inc. 32



8 Define the token and vRAUrl values.

a Retrieve the access token by using the vRealize Automation Identity Service API. See Get 
Your Access Token for the vRealize Automation API

b For the vRAUrl value, define the script so it uses a vRealize Orchestrator input parameter 

with the same name.

vRAUrl = inputs["vRAUrl"]

c Add the new values to the handler.py file.

import requests
 
def handler(context, inputs):
    token = 'ACCESS_TOKEN'
    vRAUrl = inputs["vRAUrl"]
 
    r = requests.get(vRAUrl + '/iaas/api/projects', headers={'Authorization': 'Bearer 
' + token})
 
    print('Got response ' + r.text)
 
    return r.json()

Note   Because the response from the vRealize Automation Project API is returned 
in a JSON format, use a Properties or Composite Type return type for your vRealize 

Orchestrator action.

9 Create a ZIP package that contains the handler.py file and lib folder of your request 

module.

zip -r --exclude=*.zip -X vro-python-vra.zip .

What to do next

Import the PowerShell script into a vRealize Orchestrator action. See Create Actions in the 
vRealize Orchestrator Client.

Create a Node.js Script That Calls the vRealize Automation Project 
API

Create a sample script that uses Node.js to call the vRealize Automation Project API.

Prerequisites

Download and install Node.js 14. See Node.js Downloads.

Procedure

1 On your local machine, open a command-line shell.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 33

https://code.vmware.com/docs/10222/vrealize-automation-8-0-api-programming-guide--html-/GUID-AC1E4407-6139-412A-B4AA-1F102942EA94.html
https://code.vmware.com/docs/10222/vrealize-automation-8-0-api-programming-guide--html-/GUID-AC1E4407-6139-412A-B4AA-1F102942EA94.html
https://nodejs.org/en/download/


2 Create a vro-node-vra folder.

mkdir vro-node-vra

3 Navigate to the vro-node-vra folder.

cd vro-node-vra

4 Create a Node.js script called handler.js.

touch handler.js

The handler.js script must define one function that accepts two arguments, the context of 

the vRealize Orchestrator workflow run and the bound vRealize Orchestrator inputs.

exports.handler = (context, inputs) => {
    console.log('Hello, your inputs were ' + inputs);
    return null;
}

Note   Using standard logging libraries, everything you log in the action that uses your 
script is also shown in the workflow log. The inputs and the return of your script must have 
corresponding input parameters and return types configured in the vRealize Orchestrator 
Client. For example, the vRAUrl input, in your script must have a corresponding input 

parameter called vRAUrl in the vRealize Orchestrator Client. Similarly, if your script returns 

a string value, the return type configured in the vRealize Orchestrator Client must also be a 
string type. If your action returns a complex object, you can use Properties or Composite Type 
return type.

5 Install the Node.js requests module.

npm install request

Important   Third-party dependency modules must be installed in the root level node_modules 
folder in your main vro-node-vra script folder. Do not move or rename this folder.

6 Add the requests module to the handler.js script.

const request = require('request');
 
exports.handler = (context, inputs) => {
    console.log('Hello, your inputs were ' + inputs);
    return null;
}

7 Create a GET request to the vRealize Automation Project API.

const token = '';
const vRAUrl = '';

Using the VMware vRealize Orchestrator Client

VMware, Inc. 34



request.get(vRAUrl + '/iaas/api/projects', { 'auth': { 'bearer': token } }, function 
(error, response, body) {
    console.log('Got response ' + body);
});

8 Define the token and vRAUrl values.

a Retrieve the access token by using the vRealize Automation Identity Service API. See Get 
Your Access Token for the vRealize Automation API.

b For the vRAUrl value, define the script so it uses a vRealize Orchestrator input parameter 

with the same name.

const vRAUrl = inputs.vRAUrl;

c Add the new values to the handler.js file.

const request = require('request');
exports.handler = (context, inputs, callback) => {
    const vRAUrl = inputs.vRAUrl;
    const token = 'ACCESS_TOKEN';
    request.get(vRAUrl + '/iaas/api/projects', { 'auth': { 'bearer': token } }, 
function (error, response, body) {
        console.log('Got response ' + body);
        callback(null, JSON.parse(body));
    });
}

Note   Because the response from the vRealize Automation Project API is returned 
in a JSON format, use a Properties or Composite Type return type for your vRealize 

Orchestrator action.

9 Create a ZIP package that contains the handler.js file and node_modules folder of your 

request module.

zip -r --exclude=*.zip -X vro-node-vra.zip .

What to do next

Import the Node.js script into a vRealize Orchestrator action. See Create Actions in the vRealize 
Orchestrator Client.

Create a PowerShell Script That Calls the vRealize Automation 
Project API

Create a sample script that uses PowerShell to call the vRealize Automation Project API.

Procedure

1 On your local machine, open a command-line shell.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 35

https://code.vmware.com/docs/10222/vrealize-automation-8-0-api-programming-guide--html-/GUID-AC1E4407-6139-412A-B4AA-1F102942EA94.html
https://code.vmware.com/docs/10222/vrealize-automation-8-0-api-programming-guide--html-/GUID-AC1E4407-6139-412A-B4AA-1F102942EA94.html


2 Create a vro-powershell-vra folder.

mkdir vro-powershell-vra

3 Navigate to the vro-powershell-vra folder.

cd vro-powershell-vra

4 Create a PowerShell script called handler.ps1.

touch handler.ps1

The handler.ps1 script must define one function that accepts two arguments, the context of 

the vRealize Orchestrator workflow run and the bound vRealize Orchestrator inputs.

function Handler {
  Param($context, $inputs)
 
 
  $inputsString = $inputs | ConvertTo-Json -Compress
  Write-Host "Inputs were $inputsString"
}

Note   Using standard logging libraries, everything you log in the action that uses your 
script is also shown in the workflow log. The inputs and the return of your script must have 
corresponding input parameters and return types configured in the vRealize Orchestrator 
Client. For example, the vRAUrl input, in your script must have a corresponding input 

parameter called vRAUrl in the vRealize Orchestrator Client. Similarly, if your script returns 

a string value, the return type configured in the vRealize Orchestrator Client must also be a 
string type. If your action returns a complex object, you can use Properties or Composite Type 
return type.

5 Install the PowerShell assert module.

Important   Third-party dependency modules must be installed in a root level folder in your 
main vro-powershell-vra script folder. For this use case, you create a Modules folder for your 

assert module.

a Create a Modules folder.

mkdir Modules

b Install the assert module.

pwsh -c "Save-Module -Name Assert -Path ./Modules/ -Repository PSGallery"

Using the VMware vRealize Orchestrator Client

VMware, Inc. 36



6 Add the assert module to the handler.ps1 script.

Import-Module Assert
 
function Handler {
  Param($context, $inputs)
 
 
  $inputsString = $inputs | ConvertTo-Json -Compress
  Write-Host "Inputs were $inputsString"
}

7 Create a GET request to the vRealize Automation Project API that uses the Invoke-RestMethod 
cmdlet.

$token = ''
$vRAUrl = ''
$projectsUrl = $vRAUrl + "/project-service/api/projects"
$response = Invoke-RestMethod $projectsUrl + '/iaas/api/projects' -Headers 
@{'Authorization' = "Bearer $token"} -Method 'GET'
 
Write-Host "Got response: $response"

8 Define the token and vRAUrl values.

a Retrieve the access token by using the vRealize Automation Identity Service API. See Get 
Your Access Token for the vRealize Automation API.

b Add the Assert-NotNull and Assert-Type assert module attributes.

$token | Assert-NotNull
$token | Assert-Type String

Using the VMware vRealize Orchestrator Client

VMware, Inc. 37

https://code.vmware.com/docs/13520/vrealize-automation-8-4-api-programming-guide
https://code.vmware.com/docs/13520/vrealize-automation-8-4-api-programming-guide


c For the vRAUrl value, define the script so it uses a vRealize Orchestrator input parameter 

with the same name.

$vRAUrl = $inputs.vRAUrl

d Add the new values to the handler.ps1 file.

Import-Module Assert
$ErrorActionPreference = "Stop"
function Handler {
  Param($context, $inputs)
  $token = "ACCESS_TOKEN"
  $token | Assert-NotNull
  $token | Assert-Type String
  $vRAUrl = $inputs.vRAUrl
  $projectsUrl = $vRAUrl + "/project-service/api/projects"
  $response = Invoke-RestMethod $projectsUrl -Headers @{'Authorization' = "Bearer 
$token"} -Method 'GET'
 
  Write-Host "Got response: $response"
 
  return $response
}

Note   Because the response from the vRealize Automation Project API is returned 
in a JSON format, use a Properties or Composite Type return type for your vRealize 

Orchestrator action.

9 Create a ZIP package that contains the handler.ps1 file and Modules folder of your assert 

module.

zip -r --exclude=*.zip -X vro-powershell-vra.zip .

What to do next

Import the PowerShell script into a vRealize Orchestrator action. See Create Actions in the 
vRealize Orchestrator Client.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 38



Managing Workflows 5
A workflow is a series of actions and decisions that you run sequentially. vRealize Orchestrator 
provides a library of workflows that perform common management tasks. vRealize Orchestrator 
also provides libraries of the individual actions that the workflows perform.

Workflows combine actions, decisions, and results that, when performed in a particular order, 
finish a specific task or a specific process in a virtual environment. Workflows perform tasks 
such as provisioning virtual machines, backing up, performing regular maintenance, sending 
emails, performing SSH operations, managing the physical infrastructure, and other general utility 
operations. Workflows accept inputs according to their function. You can create workflows that 
run according to defined schedules, or that run if certain anticipated events occur. Information 
can be provided by you, by other users, by another workflow or action, or by an external process 
such as a Web service call from an application. Workflows perform some validation and filtering of 
information before they run.

Workflows can call upon other workflows. For example, you can have workflow that calls up 
another workflow to create a new virtual machine.

You create workflows by using the vRealize Orchestrator Client interface’s integrated development 
environment (IDE), that provides access to the workflow library and the ability to run workflows 
on the workflow engine. The workflow engine can also take objects from external libraries that 
you plug in to vRealize Orchestrator. This feature allows you to customize processes or implement 
functions that third-party applications provide.

This chapter includes the following topics:

n Standard Workflows in the vRealize Orchestrator Workflow Library

n Create Workflows in the vRealize Orchestrator Client

n Edit Workflows and Actions from the Parent Workflow

n vRealize Orchestrator Input Form Designer

n Requests for User Interaction in the vRealize Orchestrator Client

n Schedule Workflows in the vRealize Orchestrator Client

n Find Object References in Workflows

VMware, Inc. 39



Standard Workflows in the vRealize Orchestrator Workflow 
Library

vRealize Orchestrator provides a standard library of workflows that you can use to automate 
operations in your virtual infrastructure. The workflows in the standard library are locked in the 
read-only state. To customize a standard workflow, you must duplicate that workflow. Duplicate 
workflows or custom workflows that you create are fully editable.

The contents of the workflow library are accessible through the Library > Workflows menu of the 
HTML5-based vRealize Orchestrator Client. Both standard and custom workflows in the client are 
organized by using tags. For example, you can access the Generate key pair workflow by entering 
SSH in the workflow library search box.

Note   You cannot add new tags to standard workflows, unless you duplicate the workflow.

Create Workflows in the vRealize Orchestrator Client

You can use the vRealize Orchestrator Client to create and edit workflows.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Select Library > Workflows.

3 Click New Workflow.

4 Enter the name of the new workflow and click Create.

5 Use the workflow editor to configure the variables, workflow inputs and outputs, schema 
structure, and presentation of the workflow.

6 To finish editing the workflow, click Save.

Note   You can track changes to workflows in the Version History tab. For more information, 
see vRealize Orchestrator Object Version History.

What to do next

You can use the vRealize Orchestrator token replay feature to optimize the performance of your 
workflows. For more information, see Using Workflow Token Replay in the vRealize Orchestrator 
Client.

Edit Workflows and Actions from the Parent Workflow

Edit workflows and actions directly from the parent workflow in the vRealize Orchestrator Client.

Editing child workflows and actions directly from the parent workflow can help streamline 
workflow development.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 40



Prerequisites

Create a workflow that calls up another workflow, action, or both.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows, and select your workflow.

3 Select the Schema tab.

4 Depending on the object type, double-click the Workflow element or Action element in the 
workflow canvas.

5 Edit the object.

6 To finish editing the child workflow or action, click Save.

7 To return to the parent workflow, close the object editor.

vRealize Orchestrator Input Form Designer

If a workflow requires input parameters, it opens a dialog box in which users enter the required 
values. You can organize the content, layout, and presentation of this dialog box with the input 
form designer.

The input form designer is located in the Input Form tab of the workflow editor. This designer 
consists of a navigation menu, design canvas, and properties menu. You can drag inputs and 
generic elements from the left menu to the design canvas. In the canvas, you can set the 
position of the input parameters, organize them into separate input tabs, and configure the input 
parameter properties.

Note   You cannot use content from the Variables tab of the workflow editor in the input form 
designer. You can only use parameters from the Input/Output tab.

Generic elements

You can add generic elements, like drop-down menus and password text boxes, to the input 
form designer. Generic elements do not correspond to actual input parameters, but can be 
bound to input parameters.

Create the Workflow Input Parameters Dialog Box in the vRealize 
Orchestrator Client

You can use the input form designer to create and customize the workflow input parameter dialog 
box.

Prerequisites

Verify that the workflow has a defined list of input parameters.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 41



Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows.

3 Select your custom workflow.

4 Click the Input Form tab.

5 (Optional) Create tabs for use in the input dialog box.

You can use tabs to organize the structure of your dialog box.

6 Select your input parameters.

7 Edit the properties of the input parameters.

For more information on input parameter properties, see Input Parameter Properties in the 
vRealize Orchestrator Client.

8 (Optional) Add generic elements to the canvas and bind them to input parameters.

9 (Optional) Add external validation to the input parameters. For more information, see Using 
Actions to Validate vRealize Orchestrator Workflow Inputs.

10 Click Save.

Results

You created the layout of the workflow dialog box and set the properties of the input parameters.

Input Parameter Properties in the vRealize Orchestrator Client

You can set parameter properties to constrain the input parameters that users provide when they 
run vRealize Orchestrator workflows.

With vRealize Orchestrator, you can define the parameter properties used to quantify the input 
parameter values used in workflows. The parameter properties you define impose limits on 
the types and values of the input parameters that users can provide in vRealize Orchestrator 
workflows.

Parameter properties validate the input parameters and modify the presentation of the text 
boxes that appear in the input parameters dialog box. Some parameter properties can create 
dependencies between parameters.

Parameter Property Description

Label Set the input parameter label.

Display type Set the input text box display type.

Visibility Set the visibility of the input parameter.

Read-only Set the input text box as read-only.

Custom help Set the input parameter signpost description.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 42



Parameter Property Description

Default value Set the default value of the input parameter.

Step Used for number type inputs. Set by how much the value 
of the input parameter increases per click.

Required Sets if the input parameter value is mandatory or not.

Regular expression Validates the input by using a regular expression.

Minimum value Set the minimum value or length of the parameter.

Maximum value Set the maximum value or length of the parameter.

Match text box Set the input parameter value to match the value of 
another input parameter.

Value source Set the value source of the parameter properties in the 
Appearance, Value, and Constraints tabs.

Note   You can import the value of external actions by 
using External source. The filtering of available actions is 
done by parameter type.

Using Actions to Validate vRealize Orchestrator Workflow Inputs

Use external actions to validate the inputs of your custom workflows.

Prerequisites

Create a custom workflow with input parameters. For more information, see Create Workflows in 
the vRealize Orchestrator Client.

You can use the input form designer to create external validations for your workflow inputs. 
External validations use action scripts that return a string value when the input parameter value 
contains an error. If the input parameter value is valid, the external validation returns nothing.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Create a validation action.

a Navigate to Library > Actions.

b Click New Action.

c Enter the required information on the Summary tab.

d Enter the validation action input parameters.

Note   The names of the validation action input parameters must be identical to the names 
of the workflow input parameters that are being validated.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 43



e Enter the script of the validation action on the Script tab.

if (in_1=="invalid") {
                                                return "in_1 can't be invalid!";
}
                                if (in_2=="invalid") {
                                                return "in_2 can't be invalid!";
}

//inputs are valid, return nothing

Note   The preceding script is a simple example and does not represent the full scope of 
the validation scripts that can be used.

f Click Save.

3 Apply external validation.

a Navigate to Library > Workflows.

b Select your custom workflow.

c Select the Input Form tab.

d Select the clipboard icon on the top-left of the screen.

e Drag an vRealize Orchestrator validation element into the canvas.

f Select the validation element, enter a validation label, and select the validation action.

g (Optional) Create additional validation elements.

h Click Save.

4 Run the workflow.

If the validation encounters an error, it returns a string. If the validation is successful, the 
validation returns nothing and workflow run continues.

Results

You have created an external validation for your custom vRealize Orchestrator workflow.

Requests for User Interaction in the vRealize Orchestrator 
Client

Workflows can request additional user input before they can finish.

Workflows requiring further user interaction suspend operations until the requested input 
parameters are provided by the user. Workflows define which users can provide the requested 
information and send requests for interaction accordingly. Workflows waiting for user input are 
displayed in the Recent Workflow Runs panel of the vRealize Orchestrator Client dashboard and 
the top-right notification menu.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 44



Schedule Workflows in the vRealize Orchestrator Client

You can use scheduling to automate your vRealize Orchestrator workflow runs.

When you schedule workflow runs, you set the date, time, and intervals at which the scheduled 
task runs.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Select your workflow from the Library menu, and on the workflow panel, click Schedule.

3 Configure the scheduled task parameters in the General, Scheduling, and Workflow 
categories.

Note   The Workflow parameter category is visible only for workflows that require input 
parameters .

Parameter Description

Name The name of the scheduled task.

Description A short description detailing the purpose of the 
scheduled task.

Start The date and time of the first scheduled run of the 
workflow.

Start if in the past Select whether to start the workflow, if the scheduled 
time is in the past. Yes starts the scheduled workflow 
immediately. No starts the workflow at the next 
scheduled recurrence.

Schedule Set the recurrence pattern and event trigger entries of 
the scheduled task.

End date Only visible if No Recurrence is selected. Set the date 
and time of when the scheduled task ends.

Workflow Enter the input parameters of the workflow.

4 Click Create.

Results

You have created a scheduled task for the workflow. Scheduled workflows appear under Activity 
> Scheduled. You can delete scheduled tasks by clicking Delete on the schedule panel.

Edit Scheduled Task in the vRealize Orchestrator Client

Scheduled tasks can be edited to change parameters such as date, time, and recurrence of the 
scheduled workflow.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 45



Prerequisites

Create a scheduled workflow task.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Select your scheduled task from Activity > Scheduled.

3 Click Edit on the workflow panel.

4 Edit the schedule and click Save.

Note   Input parameters set when creating the scheduled task are read-only and cannot be 
edited. To change these parameters, create a new scheduled task for this workflow.

Find Object References in Workflows

As a workflow developer, you can use object reference information to optimize your development 
life cycle.

With the vRealize Orchestrator Client, you can find object reference information. This feature has 
two functions:

n Find Dependencies: find information about object dependencies in your workflows. 
Dependencies can include other workflows, actions, resource elements, and configuration 
elements.

n Find Usages: learn if the selected workflow is used in other workflows in the vRealize 
Orchestrator Client library.

You can access information about object references from the workflow editor or from the vRealize 
Orchestrator Client library in either Card View, List View, or Tree View. For more information on 
the different types of content organization of the vRealize Orchestrator Client library, see Content 
Organization in the vRealize Orchestrator Client.

The following procedure demonstrates how you can access object references from the workflow 
editor.

Prerequisites

Develop a workflow that includes at least one object reference.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows, and select your workflow.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 46



3 To find information about object dependencies, click Find Dependencies.

Note   While on the dependencies pop-up window, you can select referenced objects from the 
list. Selecting an object opens a separate vRealize Orchestrator Client tab where you can view 
the details of the selected object or edit it.

4 To find information about where the selected workflow is used, click Find Usages.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 47



Managing Actions 6
You can modify your vRealize Orchestrator workflows by adding actions scripts.

The vRealize Orchestrator Client provides libraries of predefined actions and an action editor for 
custom action scripts. Actions represent individual functions that you use as building blocks in 
workflows.

Actions are JavaScript functions. Actions can take multiple input parameters and have a single 
return value. Actions can call on any object in the vRealize Orchestrator API, or objects in any API 
that you import into vRealize Orchestrator by using a plug-in.

When a workflow runs, an action takes input parameters from the workflow's variables. These 
variables can be either the workflow's initial input parameters, or variables that other elements in 
the workflow set when they run.

The action editor includes an autocomplete feature for scripts and an API Explorer featuring the 
available scripting types and their documentation.

This chapter includes the following topics:

n Create Actions in the vRealize Orchestrator Client

n Running and Debugging Actions 

n Core Concepts for Python, Node.js, and PowerShell Scripts 

n Runtime Limits for Python, Node.js, and PowerShell Scripts

Create Actions in the vRealize Orchestrator Client

You can use the vRealize Orchestrator Client to create, edit, and delete action scripts.

You can use the following runtimes when creating actions:

n Python 3.7

n Node.js 14

n PowerCLI 11/Powershell 6.2

n PowerCLI 12.3.0/Powershell 7.1

Note   The PowerCLI runtime includes PowerShell and the following modules: 
VMware.PowerCLI, PowerNSX, PowervRA.

VMware, Inc. 48



Prerequisites

Before creating a Python, Node.js, or PowerShell script, verify that you are familiar with the core 
concepts for developing vRealize Orchestrator compatible scripts that use these runtimes. See 
Core Concepts for Python, Node.js, and PowerShell Scripts .

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Actions.

3 Click New Action.

4 On the General tab, enter the name and module name of the action.

Note   The name and module name must be unique for every action. The action name must 
be a valid JavaScript function. The action name must be a single word that can only contain 
letters, numbers, and the dollar ("$") and underscore ("_") symbols. The module name must 
consist of words separated by the dot (".") character.

5 (Optional) Create a description, version number, tags, and group permissions for the action.

6 On the Script tab, add action inputs, select the return type of the output, and write the script.

Note   By selecting Zip from the Type drop-down menu, you can import an external script 
source and, if applicable, its dependency modules.

7 To finish editing the action, click Save.

A message states that the action is saved.

What to do next

To view a use case example of how you can use vRealize Orchestrator actions, see How to 
Integrate Amazon Web Services in vRealize Orchestrator by Using Python.

Running and Debugging Actions

You can improve your actions by running and debugging them directly from the action editor.

You can run and debug actions directly from the action editor of the vRealize Orchestrator 
Client. With this feature, you can guarantee that your actions perform as expected when they 
are integrated into your workflows.

Run Actions in the vRealize Orchestrator Client

As a workflow designer, you want to run your actions before integrating them into a workflow.

Prerequisites

Create an action. See Create Actions in the vRealize Orchestrator Client.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 49



Procedure

1 Log in the vRealize Orchestrator Client.

2 Navigate to Library > Actions, and select the action you want to run.

3 Click Run.

4 Enter the required input parameters, and click Run.

After the action run finishes, click the Results/Inputs tab. If the action run encountered an 
error, it is displayed on this tab in a red color. You can view the details of the action run from 
the Action Results element.

Note   The results of the action run are not saved.

Debug Actions in the vRealize Orchestrator Client

As a workflow designer, you can debug actions by inserting breakpoints into your script.

vRealize Orchestrator includes a built-in debugging tool that you can use to debug the script and 
input properties of your action. The debug process can be initiated in the action editor by inserting 
breakpoints into the script lines of your action.

Note   The built-in debugging tool only works with actions that use the default JavaScript runtime. 
For an example of how you can debug action scripts that use different runtimes, see Debug the 
Amazon Web Services Action.

Prerequisites

Create an action. See Create Actions in the vRealize Orchestrator Client.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Actions, and select the action you want to debug.

3 In the action editor, add breakpoints to the lines of your action script you want to debug.

4 Click Debug.

5 Enter the input parameters of your action, and click Run.

An action run in debug mode begins.

6 When the action run is paused after reaching a breakpoint, select one of the following options:

Option Description

Continue Resumes the action run until another breakpoint is reached or the action run 
finishes.

Step into Step into the current action function. If the debugger cannot go deeper into 
the current line of the function, it performs a Step over operation.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 50



Option Description

Step over The debugger continues into the next line of the current function.

Step return The debugger goes into the line that will perform when the current function 
returns.

 
7 (Optional) On the Debugger tab, add expressions.

8 (Optional) On the Debugger tab, edit the value of your variables.

Core Concepts for Python, Node.js, and PowerShell Scripts

When creating your script for use in vRealize Orchestrator, you must verify that your script has the 
correct structure and formatting.

Supported Runtimes

For developing vRealize Orchestrator actions and workflows, you can use the following runtimes:

n Python 3.7

n Node.js 14

n PowerCLI 11/Powershell 6.2

n PowerCLI 12.3.0/Powershell 7.1

Note   The PowerCLI runtime includes PowerShell and the following modules: 
VMware.PowerCLI, PowerNSX, PowervRA.

You can add any custom source code to the new runtimes, but to accept context and inputs, and 
return a result from and to the vRealize Orchestrator engine, you must follow the correct functional 
format.

Scripting Recommendations

For simpler scripting tasks, you can add Scriptable task elements to your workflow schema. You 
can use vRealize Orchestrator actions for more complex scripting tasks.

Using actions provides two specific benefits:

n Actions can be created, updated, imported, and exported independently from workflows.

n Actions are standalone objects that can be run and debugged in their own environment which 
can lead to a smoother development process. See Running and Debugging Actions .

Script Function Requirements

The default name for your script function is handler. The function accepts two arguments, context 

and input. Context is a map object, containing system information. For example, vroURL can 

contain the URL of the vRealize Orchestrator instance you want to call, while executionId contains 

the token ID of a workflow run.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 51



An input is a map object containing all inputs that are provided to the actions. For example, if you 
define an input in your action called myInput, you can access it from the inputs argument, such as 

inputs.myInput or inputs["myInput"], depending on your runtime. Anything that you return from 

the function, is the result of the action. Therefore, the return type of your action must correspond 
to the type of content that the script returns in vRealize Orchestrator. If you return a primitive 
number, the action return type must be a number type. If you return a string, the action return 
type must be a string type. If you return a complex object, the return type must be mapped to 
either Properties or Composite Type. These same principles also apply to arrays.

Supported input and output parameter types for Python, Node.js, and PowerShell runtimes:

n String

n Number

n Boolean

n Date

n Properties

n Composite Type

Define the Entry Handler

By default, the value of the entry handler is handler.handler. This value means that the 

vRealize Orchestrator engine looks for a top-level file in your ZIP package called handler.py, 

handler.js, or handler.ps1, that includes a function called handler. Any differences to the 

names of the function and handler file must be reflected in the value of the entry handler. For 
example, if your main handler is called index.js and your function is called callMe, you must set 

the value for the entry handler to index.callMe.

Debug Runtime Scripts in an External IDE

vRealize Orchestrator supports debugging Python and Node.js scripts in an external IDE. You 
cannot debug PowerShell scripts in an external IDE.

Runtime Limits for Python, Node.js, and PowerShell Scripts

Some Python, Node.js, or PowerShell scripts can require you to change the memory and timeout 
values in the vRealize Orchestrator Client.

The vRealize Orchestrator Client uses a set of default memory and timeout values for Python, 
Node.js, and PowerShell action scripts:

n Memory: 64 MB

n Timeout: 180 seconds

Using the VMware vRealize Orchestrator Client

VMware, Inc. 52



If your action script exceeds one or both of these default values, the action run fails. For example, 
your action script might use multiple third-party dependency modules. In such a scenario, the 
default memory limit of 64 MB might not be enough.

To avoid failed action runs due to insufficient resources, change the memory and timeout values 
from the action editor.

Note   You can also consider breaking up your script into multiple scriptable task elements, that 
can be added to your workflows.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Actions, and select your action.

3 Select the Script tab.

4 Under Runtime limits, change the memory and timeout values.

5 Click Save.

6 To test the new runtime limits, click Debug.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 53



Managing Configuration Elements 7
A configuration element is a list of variables, that you can use to configure constants across a 
whole vRealize Orchestrator server deployment.

You can use configuration elements to make variables available to all the workflows, actions, and 
policies running on the vRealize Orchestrator server.

If you create a package containing a workflow, action, or policy that uses a variable from a 
configuration element, vRealize Orchestrator automatically includes the configuration element in 
the package. If you import a package containing a configuration element into another vRealize 
Orchestrator server, you can import the configuration element variable values as well. For 
example, if you create a workflow that requires variable values that depend on the vRealize 
Orchestrator server on which it runs, setting those variables in a configuration element lets you 
export that workflow, so that another vRealize Orchestrator server can use it. Configuration 
elements therefore allow you to exchange workflows, actions, and policies between servers more 
easily.

Note   You cannot import values of a configuration element variable from a configuration element 
exported from vRealize Orchestrator 5.1 or earlier.

This chapter includes the following topics:

n Create Configuration Elements in the vRealize Orchestrator Client

Create Configuration Elements in the vRealize Orchestrator 
Client

With configuration elements, you can set common variables across an vRealize Orchestrator 
server. All elements that are running in the server can use the variables you set in a configuration 
element.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Assets > Configurations.

3 Select New Configuration.

4 Enter the configuration element name.

VMware, Inc. 54



5 Select the Variables tab.

6 To create a local variable, click New.

a Enter the variable name.

b Select the variable type.

Note   To create an array of configuration variables, select the Array check box.

c (Optional) Enter a value for the configuration variable.

d Click Save.

7 To finish creating a configuration element, click Save.

What to do next

You can use the configuration element to provide variables to workflows, actions, or policies.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 55



Managing Policies 8
Policies are event triggers that monitor the activity of the system. Policies respond to predefined 
events issued by changes in the status or performance of specific vRealize Orchestrator objects.

Policies are a series of rules, gauges, thresholds, and event filters that run certain workflows 
or scripts when specific predefined events occur in vRealize Orchestrator or in the technologies 
that vRealize Orchestrator accesses through plug-ins. vRealize Orchestrator constantly evaluates 
the policy rules while the policy is running. For instance, you can implement policy gauges 
and thresholds that monitor the behavior of vCenter Server objects of the VC:HostSystem and 

VC:VirtualMachine types.

This chapter includes the following topics:

n Create and Apply Policies in the vRealize Orchestrator Client

n Policy Elements in the vRealize Orchestrator Client

n Manage Policy Runs in the vRealize Orchestrator Client

Create and Apply Policies in the vRealize Orchestrator Client

You can use policies to monitor the activity of the vRealize Orchestrator system for specific events.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Policies.

3 Select New Policy.

You have created a blank policy.

4 Enter a policy name and version number.

5 Select the Variables tab.

6 To create a local variable, click New.

a Enter the variable name.

b Select the variable type.

Note   To create an array of policy variables, select the Array check box.

VMware, Inc. 56



c Enter the variable value.

Note   To import the value of a configuration element variable, you can use Bind to 
configuration.

d Click Save.

7 On the Definition tab, add policy elements and set event handlers.

For more information on policy elements, see Policy Elements in the vRealize Orchestrator 
Client.

8 Click Save.

You have configured the policy.

What to do next

To start a policy, select the policy and click Run. Enter the policy run name and, if prompted, the 
required input parameters.

To view the policy status, navigate to Activity > Policy Runs.

Policy Elements in the vRealize Orchestrator Client

You can use policy elements to run predefined vRealize Orchestrator workflows or scripts when an 
event occurs.

You can add a policy element to trigger workflow or script runs as a response to events triggered 
by objects. With the periodic event element, you can schedule workflow or script runs. With the 
root element, you can set the start or stop behavior of policies. Policy elements can have event 
handlers that define when policy elements must run.

Note   Event handlers that activate policy elements can be either workflows or action scripts. If you 
add both a workflow and a script to an event handler, the policy ignores the script trigger and only 
uses the workflow trigger.

Event Handler Description

OnInit The policy element is triggered every time you start the 
policy.

OnExit The policy element is triggered every time you stop the 
policy.

OnExecute Used by the periodic event element. Triggers the policy 
element during the time specified in the periodic event 
element.

Note   Technologies plugged in to the vRealize Orchestrator database can possess unique event 
handlers. For example, through the SNMP plug-in, you can use the OnTrap event handler when 
creating SNMP-based policy elements.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 57



Policy elements are configured on the Definition tab of the policy edit window.

Manage Policy Runs in the vRealize Orchestrator Client

You can use the vRealize Orchestrator Client to manage the policy priority and server start-up 
behavior of policies for when the vRealize Orchestrator server is restarted.

Prerequisites

Create and run a policy. For more information, see Create and Apply Policies in the vRealize 
Orchestrator Client.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

2 Navigate to Activity > Policy Runs.

3 Click the policy run you want to manage.

4 Click Stop.

The policy state changes to Stopped.

5 On the General tab, set the policy priority and server start-up behavior.

6 To restart the policy, click Run.

The policy state changes to Running.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 58



Managing Resource Elements 9
Workflows can use objects that you create independently of vRealize Orchestrator as attributes. 
To use external objects as attributes in workflows, you import them into the server as resource 
elements.

Objects that vRealize Orchestrator workflows can use as resource elements include image files, 
scripts, XML templates, HTML files, and so on. Any workflows that run in the vRealize Orchestrator 
server can use any resource elements that you import into vRealize Orchestrator.

After you import an object into vRealize Orchestrator as a resource element, you can make 
changes to the object in a single location, and propagate those changes automatically to all the 
workflows that use this resource element.

The maximum size for a resource element is 16 MB.

You can import, export, restore, update, and delete a resource element.

VMware, Inc. 59



Managing Packages 10
Use the vRealize Orchestrator Client to create, export, and import packages. Packages can be 
used to export workflow objects for use on other vRealize Orchestrator instances.

Packages can contain workflows, actions, policies, configuration elements, or resources elements.

When you add an element to a package, vRealize Orchestrator checks for dependencies and adds 
any dependent elements to the package. For example, if you add a workflow that uses actions or 
other workflows, vRealize Orchestrator adds those actions and workflows to the package.

When you import a package, the server compares the versions of the different elements of its 
contents to matching local elements. The comparison shows the differences in versions between 
the local and imported elements. The user can decide whether to import the package, or can 
select specific elements to import.

For most objects created in the vRealize Orchestrator Client, aside from resource elements, 
packages are the only way to export and import these objects.

Packages use digital rights management to control how the receiving server can use the contents 
of the package. vRealize Orchestrator signs packages and encrypts the packages for data 
protection. Packages can track which users export and redistribute elements by using X509 
certificates.

Create a Package in the vRealize Orchestrator Client

You can export and import workflows, policies, actions, plug-in references, resource elements, 
and configuration elements in packages. All dependent elements related to package objects 
are added to the package automatically, to ensure compatibility between versions. To delete 
dependent elements, you must first remove the related package object.

For most objects created in the vRealize Orchestrator Client, aside from resource elements, 
packages are the only way to export and import these objects.

Prerequisites

Verify that the vRealize Orchestrator server contains objects like workflows, actions, and policies, 
that you can add to a package.

Procedure

1 Log in to the vRealize Orchestrator Client.

VMware, Inc. 60



2 Navigate to Assets > Packages.

3 Click New Package.

4 On the General tab, enter a name and description for the package.

Note   You cannot use special characters when naming packages in the vRealize Orchestrator 
Client.

5 On the Content tab, click Add.

6 Select the objects that you want to add to the package and click Add.

Note   Dependent elements are added to the package automatically, but are not displayed in 
the Content tab during package creation. To view dependent elements, select the Content tab 
after package creation.

7 To finish creating the package, click Create.

Export a Package in the vRealize Orchestrator Client

You can use the vRealize Orchestrator Client to export packages to another vRealize Orchestrator 
environment.

Prerequisites

Create a package containing the vRealize Orchestrator objects you want to export. For more 
information, see Create a Package in the vRealize Orchestrator Client .

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Assets > Packages.

3 Click Export on the package.

4 (Optional) Select additional export options.

Option Description

Add configuration attribute values to 
package

Export the attribute values of the configuration elements.

Add configuration SecureString 
attribute values to package

Export the SecureString configuration attribute values.

Add global tags to package Export the global tags.

 

Using the VMware vRealize Orchestrator Client

VMware, Inc. 61



5 Set the access rights for users who import the package.

Option Description

View contents The user can view the package content.

Add to package The user can add content from the imported package to other packages.

Edit contents The user can edit the package content.

 
6 Click Ok.

Note   Files with the .package extension are saved to a default folder on your local machine. 

To set a custom folder, you can change the storage settings in your browser.

Results

You exported the package. You can now use the exported objects on another vRealize 
Orchestrator environment.

Import a Package in the vRealize Orchestrator Client

Use the vRealize Orchestrator Client to import workflow packages. By importing packages, you 
can reuse objects from one vRealize Orchestrator server on another server.

Prerequisites

n Back up any standard vRealize Orchestrator objects that you have modified.

n On the remote server, create and export a package with the objects you want to import.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Assets > Packages.

3 Click Import, browse to the .package file that you want to import, and click Open.

4 Review the imported package information.

a The General tab contains information about the imported package like the name, 
description, number of contained items, and certificate information.

You might be prompted to indicate that you trust the publisher certificate of the source 
vRealize Orchestrator instance before you can import the file.

b The Package elements tab lists the objects included in the import file. If the version of an 
object in the package is later than the version on the server, the system selects that object 
version for import. Earlier versions of vRealize Orchestrator elements must be selected 
manually.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 62



c Deselect Import Configuration Attribute Values if you do not want to import the attribute 
values of the configuration elements from the package.

d From the drop-down menu, select whether you want to import tags.

5 Click Import.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 63



Troubleshooting in the vRealize 
Orchestrator Client 11
You can troubleshoot and monitor your vRealize Orchestrator instance by using metrics, token 
replay, validation, and debugging.

This chapter includes the following topics:

n Metric Data in the vRealize Orchestrator Client

n Using Workflow Token Replay in the vRealize Orchestrator Client

n Validating vRealize Orchestrator Workflows

n Debug Workflow Scripts in the vRealize Orchestrator Client

n Debug Workflows by Schema Element

n Configuring a Photon OS Container for Python Packages

Metric Data in the vRealize Orchestrator Client

vRealize Orchestrator administrators can use workflow profiling and the System Dashboard 
metrics to troubleshoot the vRealize Orchestrator system and workflows.

The profiling feature gathers metric data about workflow runs. Workflow profiling is enabled 
by default. You can disable automatic profiling in Control Center > Extension Properties > 
profiler-8.6.0.

The other source for metric data in the vRealize Orchestrator Client is the System Dashboard, that 
provides system level metrics. For more information, see Using the vRealize Orchestrator System 
Dashboard.

Profile Workflows in the vRealize Orchestrator Client

You can profile your workflow runs to troubleshoot and optimize your vRealize Orchestrator 
environment.

You can use the profiling feature of the vRealize Orchestrator Client to gather useful metric data 
about your workflow runs. This data can be used to optimize the performance of your workflows. 
By default, workflow runs are profiled automatically. You can disable automatic profiling from 
the Extension Properties page of the vRealize Orchestrator Control Center and run the profiler 
manually. To do a manual profiling run, find your workflow in the library and select Actions > 
Profile.

VMware, Inc. 64



Prerequisites

Run a workflow.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Activity > Workflow Runs.

3 Select a workflow run.

On the workflow run schema, you can see data about the individual workflow items. Data 
includes total run duration, max duration, and number of item runs. You can filter this 
information from the drop-down menu on the top right of the page.

4 Select the Performance tab.

This tab provides you with metric data on workflow run CPU times, run duration, token size, 
and workflow item data.

Note   If the workflow run is suspended, for example when the workflow is waiting for further 
input, the CPU times metric only captures the runtime thread that occurred before completion.

What to do next

Use the data gathered from profiling to optimize your workflow.

Using the vRealize Orchestrator System Dashboard

As an administrator, you can use the vRealize Orchestrator Client System Dashboard to gather 
useful metric data about the nodes of your vRealize Orchestrator environment.

You can access the System Dashboard from by clicking the System tab, on the top of vRealize 
Orchestrator Client dashboard page. Provided data includes:

n Node status

n Node properties

n Cluster settings. You can only view the cluster settings from the System Dashboard. To change 
these settings, go to the Orchestrator Cluster Management page of the vRealize Orchestrator 
Control Center.

n Threads info

n Heap memory

n Non-heap memory

n File system use

n Authentication data

n Orchestrator database connection pool

n Process input arguments

Using the VMware vRealize Orchestrator Client

VMware, Inc. 65



This data can be used to monitor the state of individual nodes of your vRealize Orchestrator 
environment and troubleshoot problems. To navigate between individual nodes, click the tab 
associated with a node on the top of the System Dashboard.

Using Workflow Token Replay in the vRealize Orchestrator 
Client

You can use the token replay feature to view the transitions between items in workflow runs.

The token replay feature records contextual information for each transition between workflow 
items. For each workflow item, token replay records when the workflow run started, ended, and 
what variables were changed at the end of the workflow item run. Token replay also references 
the generated script log messages for each workflow item.

Note   Data about workflow item transitions is stored in the vRealize Orchestrator PostgreSQL 
database. This data is removed from the database when the workflow run is deleted.

Prerequisites

n Enable the token replay feature from the Control Center.

a Log in to the Control Center as root.

b Select Extension Properties.

c Click tokenreplay-8.6.0.

d To enable the token replay feature, click Enable.

e Click Save.

Note   It can take up to 5 minutes for the vRealize Orchestrator server to refresh the 
extension.

n Run a workflow.

Note   By default, the token replay does not run automatically for all workflow runs on your 
vRealize Orchestrator server. You can run token replays for each workflow individually, or enable 
the token replay extension for all workflows from the Extension Properties page of the Control 
Center.

Procedure

1 (Optional) Enable token replay for all workflow runs on your vRealize Orchestrator server.

Note   To run individual token replays without enabling the feature from the Control Center, 
click Run with replay on the workflow editor page.

a Log in to the Control Center as root.

b Select Extension Properties.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 66



c Click tokenreplay-8.6.0.

d To enable the token replay feature for all workflows, verify that Record replay for all 
workflow runs is enabled.

e Click Save.

Note   It can take up to 5 minutes for the vRealize Orchestrator server to refresh the 
extension.

2 Log in to the vRealize Orchestrator Client as an administrator.

3 Navigate to Activity > Workflow Runs.

4 Select a workflow run.

5 Select a workflow run item from the left menu.

The Variable and Logs tabs now display information specific for that workflow item.

Validating vRealize Orchestrator Workflows

vRealize Orchestrator provides a workflow validation tool. Validating a workflow helps identify 
errors in the workflow and checks that the data flows from one element to the next correctly.

By default, vRealize Orchestrator always performs a workflow validation when you run a workflow.

When you validate a workflow, the validation tool creates a list of any errors or warnings. Clicking 
an error in the list highlights the workflow element that contains the error.

If you run the validation tool in the workflow editor, the tool provides suggested quick fixes for the 
errors it detects. Some quick fixes require additional information or input parameters. Other quick 
fixes resolve the error for you.

Workflow validation checks the data bindings and connections between elements. Workflow 
validation does not check the data processing that each element in the workflow performs. As 
a result, a valid workflow might run incorrectly and produce erroneous results if a function in a 
schema element is incorrect.

Validate a Workflow and Fix Validation Errors in the vRealize 
Orchestrator Client

You must validate a workflow before you can run it. You can only fix validation errors if you have 
opened the workflow for editing.

Prerequisites

Verify that you have a complete workflow to validate, with schema elements linked and bindings 
defined.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 67



2 Navigate to Library > Workflows and select the workflow you want to validate.

3 Click Edit.

4 Click Validate from the top menu.

If the workflow is valid, a confirmation message appears. If the workflow is invalid, a list of 
errors appears.

5 For an invalid workflow, click an error message and take appropriate steps to resolve the 
problem.

The validation tool highlights the schema element in which the error occurs by adding a red 
icon to it. Where possible, the validation tool displays a quick fix action.

n If you agree with the proposed quick fix action, click it to perform that action.

n If you disagree with the proposed quick fix action, close the Workflow Validation dialog 
box and fix the schema element manually.

Important   Always check that the fix that vRealize Orchestrator proposes is appropriate.

For example, the proposed action might be to delete an unused attribute, when in fact that 
attribute might not be bound correctly.

6 Repeat the preceding steps until you have eliminated all validation errors.

Results

You validated a workflow and fixed the validation errors.

What to do next

You can run the workflow.

Debug Workflow Scripts in the vRealize Orchestrator Client

You can debug workflow runs by inserting breakpoints in the script of workflow items.

When a breakpoint is reached, you have several options to continue the debugging process. 
When you debug an element from the workflow schema, you can view the general information 
about the workflow run, modify the workflow variables, add expressions to watch, and view log 
messages.

Note   Perform all script debugging in a non-production environment.

Procedure

1 Log in to the vRealize Orchestrator Client as an administrator.

2 Select a workflow from the library.

3 Open the workflow schema, select a workflow element, and click the Scripting tab.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 68



4 To insert a breakpoint, click the red circle to the left of the line number.

Note   You can only insert breakpoints in workflow elements with scripting.

5 To run the workflow in the debugging mode, click Debug.

If the workflow requires input parameters, you must provide them.

6 When the workflow run is paused after reaching a breakpoint, select one of the available 
options.

Option Description

Continue Resumes the workflow run until another breakpoint is reached or the 
workflow run finishes.

Step into You can use this option to step into a workflow element. You cannot step 
into a nested workflow element when you debug a workflow in the workflow 
editor.

Step over Skips the current element in the schema and pauses the workflow run on the 
next element.

 

Note   You can instruct the debugger to ignore the current breakpoint by clicking the 
breakpoint. This changes the breakpoint symbol to a green triangle.

7 (Optional) On the Debugger tab, insert expressions to watch.

You can use expressions to follow the completion of specific variables.

8 (Optional) On the Debugger tab, modify the values of variables.

Debug Workflows by Schema Element

As a workflow designer, you can debug individual schema elements.

Procedure

1 Log in to the vRealize Orchestrator Client.

2 Navigate to Library > Workflows, and select your workflow.

3 Select the Schema tab.

4 Select the workflow element you want to debug, and click the debug button on the top-left of 
the element.

Note   By adding a breakpoint to a Workflow Element schema element, you can debug 
child workflows directly from the parent workflow. When the debugger reaches the Workflow 
Element schema element, it opens the schema view of the child workflow.

5 Repeat for any other schema elements you want to debug.

6 Click Debug.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 69



7 Enter the requested input parameter values, and click Run.

The workflow run begins, and is suspended when the debugger reaches a schema element 
with a breakpoint.

8 When at a breakpoint, select one of the following options:

Option Description

Continue Resumes the workflow run until another breakpoint is reached or the 
workflow run finishes.

Step into Step into the current workflow function. If the debugger cannot go deeper 
into the current line of the function, it performs a Step over operation.

Step over The debugger continues into the next line of the current function.

Step return The debugger goes into the line that will perform when the current function 
returns.

 
9 (Optional) On the Variables tab, edit the value of your workflow variables.

Configuring a Photon OS Container for Python Packages

Depending on the operating system (OS) used for compiling your Python script, your workflows or 
actions can fail after importing the relevant ZIP archive to the vRealize Orchestrator Client.

The OS of the runtime container used for Python in vRealize Orchestrator is based on Photon 3.0. 
Python script packages compiled for another OS, such as Linux for example, are incompatible with 
the runtime container. This problem can cause the Python script to fail, when you attempt to use 
it as part of your vRealize Orchestrator workflows or actions. In such a scenario, you receive the 
following error message in your logs:

-04:00errorCannot find module action

Using the VMware vRealize Orchestrator Client

VMware, Inc. 70



To resolve this problem, you must install the required Python package in a Photon OS container 
folder.

Prerequisites

Install Docker. See Get Docker.

Procedure

1 Navigate to the parent folder of your Python script.

2 Create a container with the base Photon image by mounting a container folder to your parent 
folder.

Note   The following script is a singular Docker command that you must run in its entirety to 
create a suitable container.

docker run -ti -v 
$(pwd)/<name_of_folder_that_containes_your_python_script>/:/
<name_of_folder_that_containes_your_python_script> 
photon:3.0

3 Install Python in the container.

tdnf install -y python3-3.7.5-5.ph3 python3-pip-3.7.5-5.ph3

4 Navigate to the container folder that includes your Python script.

5 Add your Python script and packages.

Note   Install packages required for your Python script in the lib folder.

 pip3 install <package_name> -t lib/ 

6 Exit the container and navigate to the local folder you mounted to the container.

7 Compress all relevant files and folders into a ZIP archive.

8 Import the ZIP archive into the vRealize Orchestrator Client and validate the script by running it 
as part of an action.

Using the VMware vRealize Orchestrator Client

VMware, Inc. 71

https://docs.docker.com/get-docker/

	Using the VMware vRealize Orchestrator Client
	Contents
	Using the VMware vRealize Orchestrator Client
	Introduction to the vRealize Orchestrator Client
	vRealize Orchestrator Client Usage Dashboard
	Content Organization in the vRealize Orchestrator Client
	Create Folders or Subfolders
	Move Objects and Folders
	Delete Folders or Subfolders


	Setting Up the vRealize Orchestrator Client
	vRealize Orchestrator Roles and Groups
	Assign Roles in the vRealize Orchestrator Client
	Configure vRealize Orchestrator Client Roles in vRealize Automation
	Create Groups in the vRealize Orchestrator Client

	vRealize Orchestrator Object Version History
	Restore a Workflow to an Earlier Version
	Visual Comparison Between Workflow Versions
	Reset Your vRealize Orchestrator Content Inventory to a Previous State with Git


	vRealize Orchestrator Use Cases
	How to Integrate Amazon Web Services in vRealize Orchestrator by Using Python
	Create Initial Python Script
	Create the Amazon Web Services Action
	Debug the Amazon Web Services Action
	Update the Amazon Web Services Action

	How Can I Use Git Branching to Manage My vRealize Orchestrator Object Inventory
	Prepare Your GitLab Environment
	Configure a Connection to a Git Repository
	Push Changes to a Git Repository

	How Can I Use Third-Party Modules to Call the vRealize Automation Project API
	Create a Python Script That Calls the vRealize Automation Project API
	Create a Node.js Script That Calls the vRealize Automation Project API
	Create a PowerShell Script That Calls the vRealize Automation Project API


	Managing Workflows
	Standard Workflows in the vRealize Orchestrator Workflow Library
	Create Workflows
	Edit Workflows and Actions from the Parent Workflow
	vRealize Orchestrator Input Form Designer
	Create the Workflow Input Parameters Dialog Box in the vRealize Orchestrator Client
	Input Parameter Properties in the vRealize Orchestrator Client
	Using Actions to Validate vRealize Orchestrator Workflow Inputs

	Requests for User Interaction in the vRealize Orchestrator Client
	Schedule Workflows
	Edit Scheduled Task in the vRealize Orchestrator Client

	Find Object References in Workflows

	Managing Actions
	Create Actions
	Running and Debugging Actions
	Run Actions
	Debug Actions

	Core Concepts for Python, Node.js, and PowerShell Scripts
	Runtime Limits for Python, Node.js, and PowerShell Scripts

	Managing Configuration Elements
	Create Configuration Elements

	Managing Policies
	Create and Apply Policies
	Policy Elements
	Manage Policy Runs

	Managing Resource Elements
	Managing Packages
	Create Packages
	Export Packages
	Import Packages

	Troubleshooting in the vRealize Orchestrator Client
	Metric Data in the vRealize Orchestrator Client
	Profile Workflows in the vRealize Orchestrator Client
	Using the vRealize Orchestrator System Dashboard

	Using Workflow Token Replay in the vRealize Orchestrator Client
	Validating vRealize Orchestrator Workflows
	Validate a Workflow and Fix Validation Errors in the vRealize Orchestrator Client

	Debug Workflow Scripts in the vRealize Orchestrator Client
	Debug Workflows by Schema Element
	Configuring a Photon OS Container for Python Packages



