Le service de VM dans le superviseur de vSphere IaaS Control Plane permet aux ingénieurs DevOps de déployer et d'exécuter des VM à apprentissage profond à l'aide de l'API Kubernetes.

En tant qu'ingénieur DevOps, utilisez kubectl pour déployer une VM à apprentissage profond sur l'espace de noms configuré par l'administrateur de cloud.

Pour plus d'informations sur les images de VM à apprentissage profond dans VMware Private AI Foundation with NVIDIA, reportez-vous à la section À propos des images de VM à apprentissage profond dans VMware Private AI Foundation with NVIDIA.

Le déploiement d'une machine virtuelle à apprentissage profond avec NVIDIA RAG nécessite une base de données vectorielle. Vous pouvez utiliser une base de données PostgreSQL avec pgvector dans VMware Data Services Manager. Pour plus d'informations sur le déploiement d'une base de données de ce type et son intégration dans une VM à apprentissage profond, reportez-vous à la section Déployer une VM à apprentissage profond avec une charge de travail RAG.

Conditions préalables

Vérifiez auprès de l'administrateur de cloud que VMware Private AI Foundation with NVIDIA est déployé et configuré. Reportez-vous à la section Préparation de VMware Cloud Foundation pour le déploiement de charges de travail Private AI.

Procédure

  1. Connectez-vous au plan de contrôle du superviseur.
    kubectl vsphere login --server=SUPERVISOR-CONTROL-PLANE-IP-ADDRESS-or-FQDN --vsphere-username USERNAME
  2. Vérifiez que toutes les ressources de VM requises, telles que les classes de VM et les images de VM, sont en place sur l'espace de noms.
  3. Préparez le fichier YAML pour la VM à apprentissage profond.

    Utilisez la valeur vm-operator-api, en définissant les propriétés OVF comme objet ConfigMap. Pour plus d'informations sur les propriétés OVF disponibles, reportez-vous à la section Propriétés OVF des VM à apprentissage profond.

    Par exemple, vous pouvez créer une spécification YAML example-dl-vm.yaml à titre d'exemple de VM à apprentissage profond exécutant PyTorch dans un environnement connecté.

    apiVersion: vmoperator.vmware.com/v1alpha1
    kind: VirtualMachine
    metadata:
      name: example-dl-vm
      namespace: example-dl-vm-namespace
      labels:
        app: example-dl-app
    spec:
      className: gpu-a100
      imageName: vmi-xxxxxxxxxxxxx
      powerState: poweredOn
      storageClass: tanzu-storage-policy
      vmMetadata:
        configMapName: example-dl-vm-config
        transport: OvfEnv
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: example-dl-vm-config
      namespace: example-dl-vm-namespace
    data:
      user-data: I2Nsb3VkLWNvbmZpZwp3cml0ZV9maWxlczoKLSBwYXRoOiAvb3B0L2Rsdm0vZGxfYXBwLnNoCiAgcGVybWlzc2lvbnM6ICcwNzU1JwogIGNvbnRlbnQ6IHwKICAgICMhL2Jpbi9iYXNoCiAgICBzZXQgLWV1CiAgICBzb3VyY2UgL29wdC9kbHZtL3V0aWxzLnNoCiAgICB0cmFwICdlcnJvcl9leGl0ICJVbmV4cGVjdGVkIGVycm9yIG9jY3VycyBhdCBkbCB3b3JrbG9hZCInIEVSUgogICAgc2V0X3Byb3h5ICJodHRwIiAiaHR0cHMiICJzb2NrczUiCgogICAgREVGQVVMVF9SRUdfVVJJPSJudmNyLmlvIgogICAgUkVHSVNUUllfVVJJX1BBVEg9JChncmVwIHJlZ2lzdHJ5LXVyaSAvb3B0L2Rsdm0vb3ZmLWVudi54bWwgfCBzZWQgLW4gJ3MvLipvZTp2YWx1ZT0iXChbXiJdKlwpLiovXDEvcCcpCgogICAgaWYgW1sgLXogIiRSRUdJU1RSWV9VUklfUEFUSCIgXV07IHRoZW4KICAgICAgIyBJZiBSRUdJU1RSWV9VUklfUEFUSCBpcyBudWxsIG9yIGVtcHR5LCB1c2UgdGhlIGRlZmF1bHQgdmFsdWUKICAgICAgUkVHSVNUUllfVVJJX1BBVEg9JERFRkFVTFRfUkVHX1VSSQogICAgICBlY2hvICJSRUdJU1RSWV9VUklfUEFUSCB3YXMgZW1wdHkuIFVzaW5nIGRlZmF1bHQ6ICRSRUdJU1RSWV9VUklfUEFUSCIKICAgIGZpCiAgICAKICAgICMgSWYgUkVHSVNUUllfVVJJX1BBVEggY29udGFpbnMgJy8nLCBleHRyYWN0IHRoZSBVUkkgcGFydAogICAgaWYgW1sgJFJFR0lTVFJZX1VSSV9QQVRIID09ICoiLyIqIF1dOyB0aGVuCiAgICAgIFJFR0lTVFJZX1VSST0kKGVjaG8gIiRSRUdJU1RSWV9VUklfUEFUSCIgfCBjdXQgLWQnLycgLWYxKQogICAgZWxzZQogICAgICBSRUdJU1RSWV9VUkk9JFJFR0lTVFJZX1VSSV9QQVRICiAgICBmaQogIAogICAgUkVHSVNUUllfVVNFUk5BTUU9JChncmVwIHJlZ2lzdHJ5LXVzZXIgL29wdC9kbHZtL292Zi1lbnYueG1sIHwgc2VkIC1uICdzLy4qb2U6dmFsdWU9IlwoW14iXSpcKS4qL1wxL3AnKQogICAgUkVHSVNUUllfUEFTU1dPUkQ9JChncmVwIHJlZ2lzdHJ5LXBhc3N3ZCAvb3B0L2Rsdm0vb3ZmLWVudi54bWwgfCBzZWQgLW4gJ3MvLipvZTp2YWx1ZT0iXChbXiJdKlwpLiovXDEvcCcpCiAgICBpZiBbWyAtbiAiJFJFR0lTVFJZX1VTRVJOQU1FIiAmJiAtbiAiJFJFR0lTVFJZX1BBU1NXT1JEIiBdXTsgdGhlbgogICAgICBkb2NrZXIgbG9naW4gLXUgJFJFR0lTVFJZX1VTRVJOQU1FIC1wICRSRUdJU1RSWV9QQVNTV09SRCAkUkVHSVNUUllfVVJJCiAgICBlbHNlCiAgICAgIGVjaG8gIldhcm5pbmc6IHRoZSByZWdpc3RyeSdzIHVzZXJuYW1lIGFuZCBwYXNzd29yZCBhcmUgaW52YWxpZCwgU2tpcHBpbmcgRG9ja2VyIGxvZ2luLiIKICAgIGZpCgogICAgZG9ja2VyIHJ1biAtZCAtLWdwdXMgYWxsIC1wIDg4ODg6ODg4OCAkUkVHSVNUUllfVVJJX1BBVEgvbnZpZGlhL3B5dG9yY2g6MjMuMTAtcHkzIC91c3IvbG9jYWwvYmluL2p1cHl0ZXIgbGFiIC0tYWxsb3ctcm9vdCAtLWlwPSogLS1wb3J0PTg4ODggLS1uby1icm93c2VyIC0tTm90ZWJvb2tBcHAudG9rZW49JycgLS1Ob3RlYm9va0FwcC5hbGxvd19vcmlnaW49JyonIC0tbm90ZWJvb2stZGlyPS93b3Jrc3BhY2UKCi0gcGF0aDogL29wdC9kbHZtL3V0aWxzLnNoCiAgcGVybWlzc2lvbnM6ICcwNzU1JwogIGNvbnRlbnQ6IHwKICAgICMhL2Jpbi9iYXNoCiAgICBlcnJvcl9leGl0KCkgewogICAgICBlY2hvICJFcnJvcjogJDEiID4mMgogICAgICB2bXRvb2xzZCAtLWNtZCAiaW5mby1zZXQgZ3Vlc3RpbmZvLnZtc2VydmljZS5ib290c3RyYXAuY29uZGl0aW9uIGZhbHNlLCBETFdvcmtsb2FkRmFpbHVyZSwgJDEiCiAgICAgIGV4aXQgMQogICAgfQoKICAgIGNoZWNrX3Byb3RvY29sKCkgewogICAgICBsb2NhbCBwcm94eV91cmw9JDEKICAgICAgc2hpZnQKICAgICAgbG9jYWwgc3VwcG9ydGVkX3Byb3RvY29scz0oIiRAIikKICAgICAgaWYgW1sgLW4gIiR7cHJveHlfdXJsfSIgXV07IHRoZW4KICAgICAgICBsb2NhbCBwcm90b2NvbD0kKGVjaG8gIiR7cHJveHlfdXJsfSIgfCBhd2sgLUYgJzovLycgJ3tpZiAoTkYgPiAxKSBwcmludCAkMTsgZWxzZSBwcmludCAiIn0nKQogICAgICAgIGlmIFsgLXogIiRwcm90b2NvbCIgXTsgdGhlbgogICAgICAgICAgZWNobyAiTm8gc3BlY2lmaWMgcHJvdG9jb2wgcHJvdmlkZWQuIFNraXBwaW5nIHByb3RvY29sIGNoZWNrLiIKICAgICAgICAgIHJldHVybiAwCiAgICAgICAgZmkKICAgICAgICBsb2NhbCBwcm90b2NvbF9pbmNsdWRlZD1mYWxzZQogICAgICAgIGZvciB2YXIgaW4gIiR7c3VwcG9ydGVkX3Byb3RvY29sc1tAXX0iOyBkbwogICAgICAgICAgaWYgW1sgIiR7cHJvdG9jb2x9IiA9PSAiJHt2YXJ9IiBdXTsgdGhlbgogICAgICAgICAgICBwcm90b2NvbF9pbmNsdWRlZD10cnVlCiAgICAgICAgICAgIGJyZWFrCiAgICAgICAgICBmaQogICAgICAgIGRvbmUKICAgICAgICBpZiBbWyAiJHtwcm90b2NvbF9pbmNsdWRlZH0iID09IGZhbHNlIF1dOyB0aGVuCiAgICAgICAgICBlcnJvcl9leGl0ICJVbnN1cHBvcnRlZCBwcm90b2NvbDogJHtwcm90b2NvbH0uIFN1cHBvcnRlZCBwcm90b2NvbHMgYXJlOiAke3N1cHBvcnRlZF9wcm90b2NvbHNbKl19IgogICAgICAgIGZpCiAgICAgIGZpCiAgICB9CgogICAgIyAkQDogbGlzdCBvZiBzdXBwb3J0ZWQgcHJvdG9jb2xzCiAgICBzZXRfcHJveHkoKSB7CiAgICAgIGxvY2FsIHN1cHBvcnRlZF9wcm90b2NvbHM9KCIkQCIpCgogICAgICBDT05GSUdfSlNPTl9CQVNFNjQ9JChncmVwICdjb25maWctanNvbicgL29wdC9kbHZtL292Zi1lbnYueG1sIHwgc2VkIC1uICdzLy4qb2U6dmFsdWU9IlwoW14iXSpcKS4qL1wxL3AnKQogICAgICBDT05GSUdfSlNPTj0kKGVjaG8gJHtDT05GSUdfSlNPTl9CQVNFNjR9IHwgYmFzZTY0IC0tZGVjb2RlKQoKICAgICAgSFRUUF9QUk9YWV9VUkw9JChlY2hvICIke0NPTkZJR19KU09OfSIgfCBqcSAtciAnLmh0dHBfcHJveHkgLy8gZW1wdHknKQogICAgICBIVFRQU19QUk9YWV9VUkw9JChlY2hvICIke0NPTkZJR19KU09OfSIgfCBqcSAtciAnLmh0dHBzX3Byb3h5IC8vIGVtcHR5JykKICAgICAgaWYgW1sgJD8gLW5lIDAgfHwgKC16ICIke0hUVFBfUFJPWFlfVVJMfSIgJiYgLXogIiR7SFRUUFNfUFJPWFlfVVJMfSIpIF1dOyB0aGVuCiAgICAgICAgZWNobyAiSW5mbzogVGhlIGNvbmZpZy1qc29uIHdhcyBwYXJzZWQsIGJ1dCBubyBwcm94eSBzZXR0aW5ncyB3ZXJlIGZvdW5kLiIKICAgICAgICByZXR1cm4gMAogICAgICBmaQoKICAgICAgY2hlY2tfcHJvdG9jb2wgIiR7SFRUUF9QUk9YWV9VUkx9IiAiJHtzdXBwb3J0ZWRfcHJvdG9jb2xzW0BdfSIKICAgICAgY2hlY2tfcHJvdG9jb2wgIiR7SFRUUFNfUFJPWFlfVVJMfSIgIiR7c3VwcG9ydGVkX3Byb3RvY29sc1tAXX0iCgogICAgICBpZiAhIGdyZXAgLXEgJ2h0dHBfcHJveHknIC9ldGMvZW52aXJvbm1lbnQ7IHRoZW4KICAgICAgICBlY2hvICJleHBvcnQgaHR0cF9wcm94eT0ke0hUVFBfUFJPWFlfVVJMfQogICAgICAgIGV4cG9ydCBodHRwc19wcm94eT0ke0hUVFBTX1BST1hZX1VSTH0KICAgICAgICBleHBvcnQgSFRUUF9QUk9YWT0ke0hUVFBfUFJPWFlfVVJMfQogICAgICAgIGV4cG9ydCBIVFRQU19QUk9YWT0ke0hUVFBTX1BST1hZX1VSTH0KICAgICAgICBleHBvcnQgbm9fcHJveHk9bG9jYWxob3N0LDEyNy4wLjAuMSIgPj4gL2V0Yy9lbnZpcm9ubWVudAogICAgICAgIHNvdXJjZSAvZXRjL2Vudmlyb25tZW50CiAgICAgIGZpCiAgICAgIAogICAgICAjIENvbmZpZ3VyZSBEb2NrZXIgdG8gdXNlIGEgcHJveHkKICAgICAgbWtkaXIgLXAgL2V0Yy9zeXN0ZW1kL3N5c3RlbS9kb2NrZXIuc2VydmljZS5kCiAgICAgIGVjaG8gIltTZXJ2aWNlXQogICAgICBFbnZpcm9ubWVudD1cIkhUVFBfUFJPWFk9JHtIVFRQX1BST1hZX1VSTH1cIgogICAgICBFbnZpcm9ubWVudD1cIkhUVFBTX1BST1hZPSR7SFRUUFNfUFJPWFlfVVJMfVwiCiAgICAgIEVudmlyb25tZW50PVwiTk9fUFJPWFk9bG9jYWxob3N0LDEyNy4wLjAuMVwiIiA+IC9ldGMvc3lzdGVtZC9zeXN0ZW0vZG9ja2VyLnNlcnZpY2UuZC9wcm94eS5jb25mCiAgICAgIHN5c3RlbWN0bCBkYWVtb24tcmVsb2FkCiAgICAgIHN5c3RlbWN0bCByZXN0YXJ0IGRvY2tlcgoKICAgICAgZWNobyAiSW5mbzogZG9ja2VyIGFuZCBzeXN0ZW0gZW52aXJvbm1lbnQgYXJlIG5vdyBjb25maWd1cmVkIHRvIHVzZSB0aGUgcHJveHkgc2V0dGluZ3MiCiAgICB9
      vgpu-license: NVIDIA-client-configuration-token
      nvidia-portal-api-key: API-key-from-NVIDIA-licensing-portal
      password: password-for-vmware-user
    Note : user-data est la valeur codée en base64 pour le code cloud-init suivant :
    #cloud-config
    write_files:
    - path: /opt/dlvm/dl_app.sh
      permissions: '0755'
      content: |
        #!/bin/bash
        set -eu
        source /opt/dlvm/utils.sh
        trap 'error_exit "Unexpected error occurs at dl workload"' ERR
        set_proxy "http" "https" "socks5"
    
        DEFAULT_REG_URI="nvcr.io"
        REGISTRY_URI_PATH=$(grep registry-uri /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
    
        if [[ -z "$REGISTRY_URI_PATH" ]]; then
          # If REGISTRY_URI_PATH is null or empty, use the default value
          REGISTRY_URI_PATH=$DEFAULT_REG_URI
          echo "REGISTRY_URI_PATH was empty. Using default: $REGISTRY_URI_PATH"
        fi
        
        # If REGISTRY_URI_PATH contains '/', extract the URI part
        if [[ $REGISTRY_URI_PATH == *"/"* ]]; then
          REGISTRY_URI=$(echo "$REGISTRY_URI_PATH" | cut -d'/' -f1)
        else
          REGISTRY_URI=$REGISTRY_URI_PATH
        fi
      
        REGISTRY_USERNAME=$(grep registry-user /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
        REGISTRY_PASSWORD=$(grep registry-passwd /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
        if [[ -n "$REGISTRY_USERNAME" && -n "$REGISTRY_PASSWORD" ]]; then
          docker login -u $REGISTRY_USERNAME -p $REGISTRY_PASSWORD $REGISTRY_URI
        else
          echo "Warning: the registry's username and password are invalid, Skipping Docker login."
        fi
    
        deploy_dcgm_exporter
    
        CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
        CONFIG_JSON=$(echo ${CONFIG_JSON_BASE64} | base64 --decode)
        enableJupyterAuth=$(echo "${CONFIG_JSON}" | jq -r '.enable_jupyter_auth // empty')
    
        if [ -z "${enableJupyterAuth}" ] || [ "${enableJupyterAuth}" == true ]; then
          # Generate a random jupyter token
          TOKEN=$(python3 -c "import secrets; print(secrets.token_hex(32))")
          # Set the token to guestinfo
          vmtoolsd --cmd "info-set guestinfo.dlworkload.jupyterlab.token $TOKEN"
          echo "Info: JupyterLab notebook access token, $TOKEN"
        else
          TOKEN=""
        fi
    
        echo "Info: running the PyTorch container"
        PYTORCH_IMAGE="$REGISTRY_URI_PATH/nvidia/pytorch-pb24h1"
        PYTORCH_VERSION="24.03.02-py3"
        docker run -d --gpus all -p 8888:8888 $PYTORCH_IMAGE:$PYTORCH_VERSION /usr/local/bin/jupyter lab --allow-root --ip=* --port=8888 --no-browser --NotebookApp.token="$TOKEN" --NotebookApp.allow_origin="*" --notebook-dir=/workspace
    
    - path: /opt/dlvm/utils.sh
      permissions: '0755'
      content: |
        #!/bin/bash
        error_exit() {
          echo "Error: $1" >&2
          vmtoolsd --cmd "info-set guestinfo.vmservice.bootstrap.condition false, DLWorkloadFailure, $1"
          exit 1
        }
    
        check_protocol() {
          local proxy_url=$1
          shift
          local supported_protocols=("$@")
          if [[ -n "${proxy_url}" ]]; then
            local protocol=$(echo "${proxy_url}" | awk -F '://' '{if (NF > 1) print $1; else print ""}')
            if [ -z "$protocol" ]; then
              echo "No specific protocol provided. Skipping protocol check."
              return 0
            fi
            local protocol_included=false
            for var in "${supported_protocols[@]}"; do
              if [[ "${protocol}" == "${var}" ]]; then
                protocol_included=true
                break
              fi
            done
            if [[ "${protocol_included}" == false ]]; then
              error_exit "Unsupported protocol: ${protocol}. Supported protocols are: ${supported_protocols[*]}"
            fi
          fi
        }
    
        # $@: list of supported protocols
        set_proxy() {
          local supported_protocols=("$@")
    
          CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
          CONFIG_JSON=$(echo ${CONFIG_JSON_BASE64} | base64 --decode)
    
          HTTP_PROXY_URL=$(echo "${CONFIG_JSON}" | jq -r '.http_proxy // empty')
          HTTPS_PROXY_URL=$(echo "${CONFIG_JSON}" | jq -r '.https_proxy // empty')
          if [[ $? -ne 0 || (-z "${HTTP_PROXY_URL}" && -z "${HTTPS_PROXY_URL}") ]]; then
            echo "Info: The config-json was parsed, but no proxy settings were found."
            return 0
          fi
    
          check_protocol "${HTTP_PROXY_URL}" "${supported_protocols[@]}"
          check_protocol "${HTTPS_PROXY_URL}" "${supported_protocols[@]}"
    
          if ! grep -q 'http_proxy' /etc/environment; then
            sudo bash -c 'echo "export http_proxy=${HTTP_PROXY_URL}
            export https_proxy=${HTTPS_PROXY_URL}
            export HTTP_PROXY=${HTTP_PROXY_URL}
            export HTTPS_PROXY=${HTTPS_PROXY_URL}
            export no_proxy=localhost,127.0.0.1" >> /etc/environment'
            source /etc/environment
          fi
          
          # Configure Docker to use a proxy
          sudo mkdir -p /etc/systemd/system/docker.service.d
          sudo bash -c 'echo "[Service]
          Environment=\"HTTP_PROXY=${HTTP_PROXY_URL}\"
          Environment=\"HTTPS_PROXY=${HTTPS_PROXY_URL}\"
          Environment=\"NO_PROXY=localhost,127.0.0.1\"" > /etc/systemd/system/docker.service.d/proxy.conf'
          sudo systemctl daemon-reload
          sudo systemctl restart docker
    
          echo "Info: docker and system environment are now configured to use the proxy settings"
        }
    
        deploy_dcgm_exporter() {
          CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')
          CONFIG_JSON=$(echo ${CONFIG_JSON_BASE64} | base64 --decode)
          DCGM_EXPORT_PUBLIC=$(echo "${CONFIG_JSON}" | jq -r '.export_dcgm_to_public // empty')
    
          DCGM_EXPORTER_IMAGE="$REGISTRY_URI_PATH/nvidia/k8s/dcgm-exporter"
          DCGM_EXPORTER_VERSION="3.2.5-3.1.8-ubuntu22.04"
          if [ -z "${DCGM_EXPORT_PUBLIC}" ] || [ "${DCGM_EXPORT_PUBLIC}" != "true" ]; then
            echo "Info: launching DCGM Exporter to collect vGPU metrics, listening only on localhost (127.0.0.1:9400)"
            docker run -d --gpus all --cap-add SYS_ADMIN -p 127.0.0.1:9400:9400 $DCGM_EXPORTER_IMAGE:$DCGM_EXPORTER_VERSION
          else
            echo "Info: launching DCGM Exporter to collect vGPU metrics, exposed on all network interfaces (0.0.0.0:9400)"
            docker run -d --gpus all --cap-add SYS_ADMIN -p 9400:9400 $DCGM_EXPORTER_IMAGE:$DCGM_EXPORTER_VERSION
          fi
        }
    apiVersion: vmoperator.vmware.com/v1alpha1
    kind: VirtualMachineService
    metadata:
      name: example-dl-vm
      namespace: example-dl-vm-namespace
    spec:
      ports:
      - name: ssh
        port: 22
        protocol: TCP
        targetPort: 22
      - name: junyperlab
        port: 8888
        protocol: TCP
        targetPort: 8888
      selector:
        app: example-dl-app
      type: LoadBalancer
  4. Basculez vers le contexte de l'espace de noms vSphere créé par l'administrateur de cloud.
    Par exemple, pour un espace de noms appelé example-dl-vm-namespace :
    kubectl config use-context example-dl-vm-namespace
  5. Déployez la VM à apprentissage profond.
    kubectl apply -f example-dl-vm.yaml
  6. Pour vérifier que la VM a été créée, exécutez les commandes suivantes.
    kubectl get vm -n example-dl-vm-namespace
    kubectl describe virtualmachine example-dl-vm
  7. Exécutez un ping sur l'adresse IP de la machine virtuelle attribuée par le service de mise en réseau demandé.

    Pour obtenir l'adresse publique et les ports afin d'accéder à la VM à apprentissage profond, obtenez les détails sur le service d'équilibrage de charge créé.

    kubectl get services
    NAME   TYPE           CLUSTER-IP              EXTERNAL-IP          PORT(S)                       AGE
    example-dl-vm   LoadBalancer   <internal-ip-address>   <public-IPaddress>   22:30473/TCP,8888:32180/TCP   9m40s
    

Résultats

Le pilote invité vGPU et la charge de travail DL spécifiée sont installés lorsque vous démarrez la VM à apprentissage profond.

Que faire ensuite