vRealize Automation 8.x Extensibility
Migration Guide

20 NOVEMBER 2020
VRealize Automation 8.2

VRealize Automation 8.x Extensibility Migration Guide

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
Www.vmware.com

. ©
Copyright 2020 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.

https://docs.vmware.com/
http://pubs.vmware.com/copyright-trademark.html

Contents

1 vRealize Automation 8.x Extensibility Migration Guide 5
2 vVRealize Automation 8.x Extensibility Migration Guide Sample Package 6

3 Accessing VRealize Automation Objects and Properties 7
Persist and Manage vRealize Automation Orchestrated Hosts with Their Credentials 9

Pass Credentials from a vRealize Automation User to the vRealize Automation Plug-in for
vRealize Orchestrator 9

VRealize Automation 8.x Finder Objects 10
VRealize Automation Scripting Objects and REST Queries 13

Actions and Workflows Supporting Common Operations 14

4 Customizing Machine Provisioning 16
Customize Machine Properties or Deployments with Extensibility Topics 16

Customize Machine Properties or Deployments using the vRealize Automation APl 18

5 Day 2 Operations on laaS Entities 20
Custom Form API Call Examples 23

6 Using Dynamic Types with Custom Resources in vRealize Automation Cloud
Assembly 29

Creating the Dynamic Types Configuration 30
Dynamic Types Object and Custom Resource Requirements 30

Create the Dynamic Types Custom Resource 31

7 Lifecycle Extensibility 33
Migrating Subscriptions from vRealize Automation 7.x to vRealize Automation 8.x 35
Creating a Subscription 36
Create a Wrapper Workflow 37
Testing the Subscription 39

8 Onboarding a Customer Organization 41
Onboarding a Project 43
Sychronizing the vIDM Directory 43
Creating a vRealize Automation Project 44
Associating a Tag with the Project 45
Add Cloud Zones to the Project 45

Assign Cloud Assembly and Service Broker User Roles 46

VMware, Inc.

VRealize Automation 8.x Extensibility Migration Guide

Assign Catalog Items to a Project 46
vRealize Orchestrator Implementation for Project Onboarding 47

Adding Resource Provisioning to a Project 48

9 Requesting Catalog Items 50
API Tag Filtering Examples 51
VRealize Orchestrator Action Example 51
Basic Sample Cloud Template 52
Associating an External Value with the getTagByKey Action 53
Example Service Broker Catalog Request 55

Requesting Catalog Items Programatically 56
10 Tags and Custom Properties 60

11 Using vRealize Automation Xaa$S Services 64
Differences between vRealize Orchestrator Forms and Service Broker Forms 64
Workflow Sample 68
Using Custom Resources 70
Resource Mappings 71

Custom Cloud Template Component 71

VMware, Inc.

VRealize Automation 8.x
Extensibility Migration Guide

The vRealize Automation Extensibility Migration guide provides information about functionality
changes between vRealize Automation 7.x extensibility and vRealize Automation 8.x extensibility.

The vRealize Automation 8.x Extensibility Migration Guide includes use cases that demonstrate
the extensibility functionality in vRealize Automation 8.x.

For information on migrating vRealize Automation 7.x to 8.x, see the vRealize Automation 8
Transition Guide .

VMware, Inc. 5

vRealize Automation 8.x
Extensibility Migration Guide
Sample Package

To develop the use cases documented in this guide properly, you must download the required
sample package.

The use cases in this guide reference resources included in the sample package hosted on
VMware {code}. To download the package, see vRealize Automation 8.x Extensibility Migration
Guide Samples - Preview.

VMware, Inc.

https://code.vmware.com/samples?id=7469
https://code.vmware.com/samples?id=7469

Accessing VRealize Automation
Objects and Properties

Most of the scenarios in this guide require access to the objects of vRealize Automation services.
This process is required so you can access and configure object properties or run operations on
the objects.

You can access the vRealize Automation 8.x services through the REST API. Each service has a
separate REST API with a unique endpoint URL.

The vRealize Automation REST APIs are documented in:

m The built-in Swagger/OpenAPI documentation hosted on your vRealize Automation server.
This documentation can be found at https://your_vRA_FQDN/automation-ui/api-docs/

m The vRealize Automation API Programming Guide
Different services can have different API behavior such as:
m The laaS service has a different query service syntax and paging syntax.

m The laaS service returns a payload of the object created on POST, other services returns the
object ID in the location header.

You can enable the developer view to capture calls to the vRealize Automation services to
receive more information about:

m Operations (GET, PUT, POST, PATCH, DELETE)

m Base URL (/service/api/resource)

m Parameters (paging, sorting, queries)

m Request Payload (The JSON information passed to create / update objects)

m Response payload (The JSON information returned to describe the object and their
properties)

However, there are some considerations and differences regarding the vRealize Automation API
services:

m The user interface uses some proprietary service endpoints. These are not documented or
supported and might be changed or become inaccessible outside the user interface in next
releases without notice.

VMware, Inc.

https://code.vmware.com/docs/12597

VRealize Automation 8.x Extensibility Migration Guide

m The enabled operations are different. For example, it is not possible to update machine
custom properties in vRealize Automation 8.1. However, the functionality is available in
vRealize Automation 8.2. In the user interface, it was always available in vRealize Automation
8.1.

m The response payload may be different as some properties might be missing.

The vRealize Automation 7.x user interface uses the public API fully and has more options to
access service APIs, including software development kits (SDKs) for different languages. In
VvRealize Automation 7.x, all extensibility functions include event broker subscriptions, XaaS
blueprints (known as cloud templates as of 8.2), custom resources, and resource actions. XaaS
blueprint components, such as custom resources, leverage vRealize Orchestrator workflows.
Custom forms leverage vRealize Orchestrator actions.

For many use cases in vRealize Automation 7.x, this vRealize Orchestrator based extensibility
requires access to vRealize Automation to get further information from the payload passed from
vRealize Automation to vRealize Orchestrator. The services also list vRealize Automation objects,
so these objects can be used in extensibility. The most common approach to accessing vRealize
Automation 7.x objects is from the vRealize Automation plug-in for vRealize Automation. This
plug-in can be accessed either from the built-in REST client or through plug-in objects.

The vRealize Automation plug-in provides:
1 A way to persist and manage vRealize Automation orchestrated hosts with their credentials.

2 The ability to pass host and credentials from a vRealize Automation user to vRealize
Automation plug-in to make API queries as this user.

3 Aninventory of 92 objects allowing users to select objects by their name or properties in
drop-down menus or tree-view.

4 Over 800 JavaScript scripting objects and their documentation (API explorer).
5 Hundreds of library actions and workflows supporting common operations.

This section of the guide discusses the implementation of the above use cases in vRealize
Automation 8.x.

Many of the workflows triggered by vRealize Automation 7.x leverage the vRealize Automation
plug-in to access vRealize Automation services. The workflow elements making use of these
plug-ins as well as those using the vRealize Automation 7.x REST API must be rewritten.

As of vRealize Automation 8.2, the counterpart for this plug-in does not exit.

To identify the workflow elements that require a rewrite after migrating to vRealize Automation
8.X, please use the vRealize Automation Migration Assistant. The migration assistant is available
from https://your_vRA_FQDN/migration-ui. For more information on migrating to vRealize
Automation 8.x, see the vRealize Automation 8 Transition Guide.

This chapter includes the following topics:

m Persist and Manage vRealize Automation Orchestrated Hosts with Their Credentials

VMware, Inc.

vRealize Automation 8.x Extensibility Migration Guide

Pass Credentials from a vRealize Automation User to the vRealize Automation Plug-in for
vRealize Orchestrator

m VRealize Automation 8.x Finder Objects
m VvRealize Automation Scripting Objects and REST Queries

m Actions and Workflows Supporting Common Operations

Persist and Manage vRealize Automation Orchestrated
Hosts with Their Credentials

Learn how to persist and manage vRealize Automation orchestrated hosts.

vRealize Automation hosts can be persisted and managed as vRealize Orchestrator REST plug-in
hosts. However, such hosts are listed among other REST hosts in the inventory. The host
credentials can be stored as secure strings in workflow variables or configuration elements.

Note Storing credentials as secure strings exposes the credentials to workflow developers who
can convert the secure string as a string.

In the examples provided in the sample section, hosts are stored as REST hosts, and the host and
the credentials are saved in the vRAHOST configuration element.

Pass Credentials from a vRealize Automation User to the
VRealize Automation Plug-in for vRealize Orchestrator

This use case presents alternatives that you can use to pass user credentials without using the
VRealize Automation plug-in.

In some use cases, it is required that the roles and permissions for the workflow accessing back
to vRealize Automation are the same as the user who initiated the workflow from vRealize
Automation.

m For auditing purposes - when it is necessary to track which user made a change, even if this is
through a workflow the user triggered in vRealize Automation.

m For presenting information that the user can access, such as the content of a drop-down
menu run by XaaS (Anything as a service) or a query run within a workflow.

m For taking actions, modifying properties with the role and permissions of the user. For all
operations, the user can trigger that through extensibility.

As of vRealize Automation 8.2, there is no solution to pass the vRealize Automation
authentication from vRealize Automation to vRealize Orchestrator so it can be used to
authenticate back in vRealize Automation.

The workaround for this limitation is to query the end user to reenter their credentials when they
run the workflow. However, doing so exposes their credentials to the vRealize Orchestrator
developer.

VMware, Inc. 9

vRealize Automation 8.x Extensibility Migration Guide

Another solution that prevents users from accessing unauthorized data is to use a service
account and create action-based filters by project based on user permissions.

The sample workflows provided in the sample package include user name and password inputs
in the workflows with values defaulting to the credentials provided when running the Set vRA
Hostworkflow. These credentials are used to get an authentication token that is provided in each
REST query as a header. This data is gathered through the getvRA8CustomHeaders and
invokeRestOperation sample actions.

Note It is possible to retrieve the custom headers once and reuse them at the workflow scope
by storing the data in a workflow variable or in the vRealize Orchestrator server in a configuration
element. However, if you plan to implement this approach, or have long running workflows, you
might have to handle updating this token to verify that is still valid.

VRealize Automation 8.x Finder Objects

The vRealize Automation 7.x inventory includes 92 finder objects that can be used to select other
inventory objects by name or properties.

The finder objects can be applied through either drop-down menus or a tree view.

You can implement a drop-down menu either with string-based inputs displaying object names
bound to an action, or by using one of the following methods:

m Authenticating in vRealize Automation by passing the credentials stored in a configuration
element.

m Creating a REST query to list the objects by applying filters if necessary.
m Return the object names from the JSON payload.

Also, when there are successive name-based drop-down menus that depend on each other, you
must write actions that find the objects by name. To achieve this, you can use the sample action
getDeploymentResourcesNamesByDeploymentName which is included in the vRealize Automation
8.x Extensibility Migration Sample Package. You must use the same action in the workflow
containing string-based name inputs, so that the matching object ID can retrieve or update these
objects with REST queries. If there are multiple objects with the same name, you must build
unique strings that contain further object properties or their parent objects.

To perform efficient queries to find objects, it is necessary to use the query service. Retrieving all
objects and iterating through them in a loop is not a best practice, particularly for objects that
can have hundreds or thousands of iterations.

Use filtering as much as possible to avoid using CPU, IO, memory, input/output (I/O), or network
resources on both the vRealize Automation and the vRealize Orchestrator deployment.

The following example includes a query used to find an laaS (Infrastructure as a Service) machine
by name. The sample code snippet is taken from the sample action getMachineByNameQS.

var url = "/iaas/api/machines";
// Query service parameter

VMware, Inc. 10

vRealize Automation 8.x Extensibility Migration Guide

var nameFilter = "name eq + machineName +

var parameters = "$filter=" + encodeURIComponent(nameFilter).replace("'", "%27");

var machines =
System.getModule("com.vmware.vra.extensibility.rest").getObjects(restHost,username,password,
customHeaders,url, parameters);

if (machines.length == 1) return machines[0];

if (machines.length == 0) return null;

// More Machines returned than expected !

System.warn("getProjectByNameQS returned " + projects.length + " projects");

return null;

You must encode any variable that might contain spaces or other special characters that are not
accepted in the URL or from the server side. For example, an apostrophe (') must be replaced
with %27.

Alternatively, it is possible to use custom forms string drop-down menus populated by the values
of an action returning Properties type. The keys storing the object ID are passed to the workflow
and can be used directly without retrieving the ID from the names.

It is also necessary to handle paging. The default number of object returned in a single query is
limited. To get all objects, it is possible to:

m Change the default number of objects per page.

Note There can be a maximum limit.

m Make different queries for different page numbers until all objects are received.

The samples actions getIaaSObjects and getDeploymentObjects provide samples on how to use
the paging parameters with the laaS and deployment services. Depending on the service in use,
this is done either with the skip parameter or the page parameter.

The following sample includes the getIaaSObjects sample code:

var iaasObject =
System.getModule("com.vmware.vra.extensibility.rest").getObjectFromUrl(restHost,username,password,cust
omHeaders,url, parameters);

var content = iaasObject.content;

var skip = 0;

var elementsLeft = iaasObject.totalElements - iaasObject.numberOfElements;
System.log(elementsLeft);

var allContent = content;

var numberOfElements = iaasObject.numberOfElements

while (elementsLeft >0) {
var skip = skip + numberOfElements;
if (parameters == null) parameters = "$skip=" + skip;

else parameters = parameters + "&$skip=" + skip;

iaasObject =

VMware, Inc. n

vRealize Automation 8.x Extensibility Migration Guide

System.getModule("com.vmware.vra.extensibility.rest").getObjectFromUrl(restHost,username,password,cust
omHeaders,url, parameters);

content = iaasObject.content;

elementsLeft = elementsLeft - iaasObject.numberOfElements;

allContent = allContent.concat(content);

return allContent;

The following sample includes the getDeploymentObjects sample code:

var object =
System.getModule("com.vmware.vra.extensibility.rest").getObjectFromUrl(restHost,username,password,cust
omHeaders,url, parameters);

var content = object.content;

var page = 1;
var allContent = content;

while (object.last == false) {
if (parameters == null || parameters == "") newParameters = "page='

+ page;

else newParameters = parameters + "&page=" + page;

object =
System.getModule("com.vmware.vra.extensibility.rest").getObjectFromUrl(restHost,username,password,cust
omHeaders,url, newParameters);

content = object.content;

allContent = allContent.concat(content);

page++;

return allContent;

To avoid searching for which service is using which query service syntax for paging, the
getObjects () action checks which query service format to use based on the properties of the
JSON file and returns all objects.

As an example about providing an alternative to having inventory objects, the sample package
includes the Drop down folder. The folder contains workflow examples with forms that use actions
to populate the drop-down menus, including deployments, deployment resources, and
deployment resource tags.

Another alternative to plug-in inventory objects is to create vRealize Orchestrator dynamic types
for the required vRealize Automation objects. In this way, you can use an object as input
supporting different properties or a tree view.

In some use cases, a single tree view is more convenient than multiple drop-down menus
because you can filter for the object you want to select based on its parents.

VMware, Inc. 12

vRealize Automation 8.x Extensibility Migration Guide

VRealize Automation Scripting Objects and REST Queries

In vRealize Automation 8.x , you can use REST queries to substitute the scripting objects included
in the vRealize Automation plug-in, which can be used to construct, access, and document all
program-based objects.

The equivalent of these objects at the REST level is documented in the Models section in
Swagger. The Swagger models include JSON examples for object properties that can be included
in a vRealize Orchestrator action. The Swagger documentation is essential for understanding the
properties of the objects returned by REST queries and constructing objects to pass as the body
of PUT, POST, PATCH requests.

The following example, createZone, is used to create a zone:

var customHeaders = System.getModule("com.vmware.vra.extensibility").getvRA8CustomHeaders(restHost,
username, password);

var customPropertiesObject =

System.getModule("com.vmware.vra.extensibility.rest.iaas") .propertiesToCustomPropertiesObject(customPr
operties);

var tagsObject =

System.getModule("com.vmware.vra.extensibility.rest.iaas") .propertiesToTagsObject(tags);

var tagsToMatchObject =

System.getModule("com.vmware.vra.extensibility.rest.iaas") .propertiesToTagsObject(tagsToMatch);

var url = "/iaas/api/zones"

var zone =

{
"customProperties": customPropertiesObject,
"folder": folder,
"regionId": regionld,
"tagsToMatch": tagsToMatchObject,
"name": name,
"description": description,
"placementPolicy": placementPolicy,
"tags": tagsObject

var content = JSON.stringify(zone);
var operation = "POST";

try {
var contentAsString =
System.getModule("com.vmware.vra.extensibility").invokeRestOperation(restHost, operation, url,
content, customHeaders);
var object = JSON.parse(contentAsString);
return object.id;
} catch (e) {
throw "POST " + url + "Failed" +

"\n Error : + e;

VMware, Inc. 13

vRealize Automation 8.x Extensibility Migration Guide

The vRealize Automation plug-in included in 7.x also includes "singleton" objects that provide a
global access point to properties (Enumerations : constants) and methods. The methods provide
special functionalities. For example, methods to find objects by their properties.

By using REST queries it is possible to provide equivalent functionality through actions. The
following example includes code from the sample action getNetworksByTagsQS that can be used
to find networks.

var tagsFilters = new Array(Q);
for each (var tag in tags) {tagsFilters.push(getTagFilter(tag))}

// Query service parameter
var tagsFilter = tagsFilters.join(" and ");

if (tags.length == 0) var parameters = "expand";
else var parameters = "expand&$filter=" + encodeURIComponent(tagsFilter).replace("'", "%27");
return

System.getModule("com.vmware.vra.extensibility.rest.iaas").getNetworks(restHost,username,password,
customHeaders, parameters);

function getTagFilter(tag) {
return "(expandedTags.item.tag eq '*" + tag + "*'))"

}

Actions and Workflows Supporting Common Operations

Actions and workflows must be written by using the REST API.
When writing actions and workflows by using the REST API, you must follow these guidelines:

m Create action and Create workflows must return the object ID received in the payload or in
the "location" response header after invoking a POST operation.

m Delete and Update actions and workflows must have an ID input to pass to the REST query.

. Workflows run by end user must have an input presentation getting object names and using
action to convert names inputs to object IDs.

To test REST API calls, you can use two sample workflows.

m The Invoke VRA 8 REST Operation from URL sample workflow allows you to enter free form
URLSs.

m The Invoke VRA 8 REST Operation from swagger and display result sample workflow
provides a drop-down menu of services, operations, and URLs based on the vRealize
Automation server Swagger.

VMware, Inc. 14

VvRealize Automation 8.x Extensibility Migration Guide

Invoke VRA 8 REST Operation from swagger and display result

vRA REST Host * vRA B.2 ®

Service * Infrastructure as a Service
Operation * GET
URL * fiaas/api/fnetworks

]

Salnvoke VRA 8 REST Operation from swagg

b
¢ * Genera Variables Logs

getvRABCustomHeaders
invokeRestOperation

@

ernalRegionId”
pudAccountIds”: [
"bbd7cBb3-c435-4as

ustomProperti
externalld

"VM Netwo!
918b5b35-32d
ated "

"network-domains" :

"href

loudAccountIds

Completed ALL RUNS

ETE RUN

er and display result

GET http
ontent :
tatus code: 200

cava-6-244-226.eng.vmware.c api/network

Response Headers :
che, n re, max-age=0, must-r
1 ; mode=block
no-refer

acenter:datacenter-2",

-54c215ab3£03"

rportgroup=-96"

ualPortgroup:
(dvPo! sroup)”,
-4008-827d-43£020205a46",
-17",

5£d312-9465-4£51-Bab9 c

018c6b6 ",
9-9lecc018c6b6”,

=54c215ab3£03"

{

aas/api/network-domains/9b8d58

[
“5db932f4-9aa3-dab5-bl106-d16fd5ed47568"

VMware, Inc.

RUN AGAIN

Customizing Machine Provisioning

In vRealize Automation 8.x, you can customize machine properties or deployments in two ways.

You can use event topics that are already available in Cloud Assembly to modify custom
properties during provisioning, or you can use the vRealize Automation API to trigger Day 2
operations on deployments that are already completed.

This chapter includes the following topics:
m Customize Machine Properties or Deployments with Extensibility Topics

m Customize Machine Properties or Deployments using the vRealize Automation API

Customize Machine Properties or Deployments with
Extensibility Topics

You can update machine properties or deployments by using the available extensibility topics
during the deployment life cycle.

To update the deployment payload, you can create new subscriptions using available
extensibility topics such as Provisioning Request and Disk Allocation that call vRealize
Orchestrator workflows or extensibility actions.

Prerequisites

Access the extensibility code samples package.

VMware, Inc.

vRealize Automation 8.x Extensibility Migration Guide

Procedure
1 To customize machine CPU or memory properties, create a new extensibility subscription.
a Enter a subscription name. For example, you can name it Customize CPU/Memory.
b In Event topic, select Provisioning request.
c Next to Action/workflow, set an output of type String called flavor.
Note You cannot change the machine CPU and memory properties directly if you do not

set a new flavor mapping. The output property must be called flavor, and the value must
be an existing flavor mapping profile.

The following code snippet is taken from a sample extensibility action.

def handler(context, inputs):
outputs = {
"flavor": "large"

}

return outputs

2 To customize disk allocation, create another extensibility subscription.
a Enter a subscription name. For example, you can name it Disk size.
b In Event topic, select Disk allocation.
¢ Next to Action/workflow, set an output of type Array called diskSizesInGb.

The following code snippet is taken from a sample vRealize Orchestrator workflow.

// Customize the size of the first VM disk

var vm_disks = inputProperties.get("diskSizesInGb");

if (isParameterReadOnly("diskSizesInGb") == false) {
vm_disks[0]=30;

}

diskSizesInGb = vm_disks;

3 Request a new virtual machine from the vRealize Automation Catalog Iltem.

What to do next

Once the deployment is ready, navigate to Virtual Machine settings. Verify that the CPU,
memory, or disk size are set to the values configured in the extensibility action or vRealize
Orchestrator workflow that are used in the subscriptions you created.

VMware, Inc. 17

vRealize Automation 8.x Extensibility Migration Guide

Customize Machine Properties or Deployments using the
VRealize Automation API

To customize machine properties on already completed deployments in vRealize Automation 8.x,
you can use third party tools or vRealize Orchestrator workflows to trigger day 2 operations with
API calls.

The following examples use Swagger. You can access the VMware Service Broker API at https://
your_VRA_FQDN/deployment/api/deployments/{depld}/resources/{resourceld}/requests

Procedure
1 Update the CPU/memory values for a machine resource.

Submit a resource action request.

POST /deployment/api/deployments/{depId}/resources/{resourceld}/requests

The following code snippet is a sample body:

{
"actionId": "Cloud.vSphere.Machine.Resize",
"targetId": "e9d88d23-2edb-4dcb-812b-b3593368b164",
"inputs": {"cpuCount": 4, "totalMemoryMB": 4096}

}

Note The actionId depends on the Machine object type. For vSphere machines, the object is
Cloud.vSphere.Machine. The targetId is the machine resource object ID. You can access both
from the machine resource object custom properties in the vRealize Automation Client.

2 Update the disk size value for a Disk resource.

Submit a resource action request.

POST /deployment/api/deployments/{depId}/resources/{resourceld}/requests

The following code snippet is a sample body:

{
"actionId": "Cloud.vSphere.Disk.Disk.Resize",
"targetId": "710f6d3b-4fdc-4883-8acf-08129c2ad07a",
"inputs": {"capacityGb":30}

}

Note The actionId depends on the Disk resource object type. For a vSphere disk the object
is Cloud.vSphere.Disk. The targetId is the Disk resource object ID. You can access these from
the disk resource object custom properties in the vRealize Automation Client.

VMware, Inc. 18

vRealize Automation 8.x Extensibility Migration Guide

3 Update the Deployment Lease.

Submit a resource action request.
POST /deployment/api/deployments/{depId}/resources/{resourceld}/requests

The following code snippet is a sample body:

{
"actionId": "Cloud.vSphere.Disk.Disk.Resize",
"targetId": "2da7675d-a791-4a4a-bc4f-5817b5c5e9d2",
"inputs": {"capacityGb":30}

}

Note The targetldis the deployment ID. You can access it from the deployment URL in the
vRealize Automation Client.

Results

Verify that the POST request is successful in the vRealize Automation Client.

VMware, Inc.

Day 2 Operations on laaS Entities

This section discusses changes between vRealize Automation 7.x and vRealize Automation 8.x
actions.

vRealize Automation actions can be separated in three different categories. The examples
presented here use Postman.

Out of the box actions

Out of the box actions can be categorized as follows:

m There are equivalent actions in vRealize Automation 8.x, such as Create Snapshot, so no
changes are needed.

m There is no replacement, such as Get Expiration Reminder. You must either remove these
missing actions from your development lifecycle, or write custom actions to perform the
required function.

m There are new action in vRealize Automation 8.x, such as Revert To Snapshot. No changes
are needed.

Custom actions

Custom actions are user written workflows. You convert the workflow over to vRealize

Orchestrator 8.x and, if applicable, replace the vRealize Automation 7.x API calls. For example, to

add a vCPU to a virtual machine, you look up the cloud zone quota before adding the new
resource. The following sample includes a vRealize Automation 8.x API call.

VMware, Inc.

20

VRealize Automation 8.x Extensibility Migration Guide

Pretty Raw Preview Visualize JSON = =
s S
2 "content": [
3 {
4 "administrators": [],
5 "members”: [],
6 "viewers": [],
7 "zones": [
8 {
9 "zoneId": "c32589b2-4310-4729-8bd8-512c673%ecald”,
18 "priority": O,
11 "maxNumberInstances": @,
12 "memoryLimitMB": @,
13 "cpuLimit™: 8,
14 "storagelLimitGB": ©
15 ¥
16 1,
17 "constraints": {},
18 "operationTimeout": @,
19 "csharedResources": true,
28 "name": "maks_test"”,
21 "description": "",
22 "id": "@5d3984f-b29b-45dd-9539-67b5d73a2cel",
23 "organizationId": "289b7lef-c7c5-47dc-bl7c-dle3@be6723d",
24 "orgld": "289b7lef-c/c5-4/dc-bl7c-dle3B8bet723d",
25 " links™: {

In Cloud Assembly, you create a resource action and add a binding between the vRealize
Orchestrator VC:VirtualMachine input type used in the workflow and the vRealize Automation
Cloud Assembly Cloud.vSphere.Machine resource type. To account for the other input parameters
in the workflow, you can customize the request form that users see when they request the
action. For an example of implementing custom actions, see How to create a vRealize
Automation Cloud Assembly custom action to vMotion a virtual machine in Using and Managing
vRealize Automation Cloud Assembly.

VRealize Automation 7.x specific actions

Some VRealize Automation 7.x concepts are not valid in vRealize Automation 8.x, such as
ownership per virtual machine. Instead, vRealize Automation 8.x has ownership per deployment.
Deployments can be shared among project members.

VMware, Inc. 21

VRealize Automation 8.x Extensibility Migration Guide

As a vRealize Automation user you can write a day 2 action that changes virtual machine
ownership from a provisioning user to an end user. To do the same in vRealize Automation 8.x,
you must:

1 Enable deployment sharing for your project.
2 Add all users to the project.

Alternatively, you can write a workflow that adds a user to the project by using the following
project API call:

/iaas/api/projects/{id}

VMware, Inc.

22

VRealize Automation 8.x Extensibility Migration Guide

The workflow must have two input parameters, one for project name and one for user name. You
create a catalog item for this workflow, and you apply a request form to the catalog item. This
request uses another workflow to retrieve project names. For example, this API call adds

testUser2 to a project:

PATCH
Params @ Authorization @ Headers (10) Body @ Pre-request Script Tests Sertings

none form-data xwenw-form-urlencoded ® row binary GraphQL JSON
1~

2 “administrators": [1,

Y "members": [

4 5 {

5 "email™: "testUseri"

6 H

7 1,

8 "viewers™: [],

g "zones": [].
1@ "constraints"”: {},

11 "operationTimeout™: @,

12 "sharedResources™: true,

13 "name”: "test2",

14 "description™: "",

15 "id": "1f3d6aaf-3ad@-dacc-991d-51ddbb28b68I",

16 "organizationId": "289b7lef-c7c5-47dc-bl7c-dle3ebes7234d",

17 "orgld": "289b7lef-c7cS5-47dc-bl7c-dle30be&?23d",

18 " links": {

19 e i gl

28 "href®: "/iaaz/api/projects/1f3d6aaf-3a98-4acc-991d-51ddbb23b68S"
21 1

22 }

23 ¥

3ody Cookies Headers (11) TestResults € Staus 2000 T 5
Pretmy Raw Preview Visualize JSON = 5

1 f

2 "administrators”: [1,

3 "members": [

4 {

5 "email": “testUser2”

6 ¥

7 1,

8 *viewers": []1,

9 "zones": [1,

18 "constraints": {},

11 "poerationTimeout™: @.

This chapter includes the following topics:

m Custom Form API Call Examples

Custom Form API Call Examples

v hupsiifsm-vra8i.sqa.localfisas/api/projects/1f3d6aaf-3a90-4acc-991 d-51ddbb28b6897ap Version=2019-01-15 m

You can request a VRealize Automation 8.x catalog item with custom forms that use API calls. All

examples are presented by using Postman.

VMware, Inc.

23

VRealize Auto

Obtain

L

Body Cookies

Pretty Raw
1

VMware, Inc.

mation 8.x Extensibility Migration Guide

a bearer token

Params @ Autherization Headers (10} Body @ Pre-request Script Tests Settings

® none @ formdata @ xowww-form.uriencoded @ raw @ binary @ GraphQL jSON *

"username”: “administrator”,
“password
“domain®: “System Domain"

1 “"VMwarel!®,

Headers {13) Test Results @ Status: 2000K Time: 1690 ms Size: B1TKB

Preview Visualize JSON +

2 “scope”™: "openid profile user email”,
3 "access_token™: “eyloexXAioidkviQilc ISUZIINAT: 161 ISNjcifq.

ey IpcIMI0LI0T1QemVSdWR 1 TELKZWS@aXRSIFNLCNZpY2Us TIU9QO1CVSXPPVZNG2F yZSxMPYNY ZmLhL FNUPVNYZmLhLEMOQkciLCIpYXQIO] E10TgSNIU40TI S ImVAcCIGMTUSODKS
ZWM1¥2E2ZTULMDKSHYBOMTkxL T 21Ut NI kBODF k0T Y jAwT iwi ¥29udGW4dCI6T 1t 7XCItdGRE T §pe InvybipvYXNpc 2puyWl e 2pe 2 pTQUIMO TuMDphY 2p jbGF 2c 2V201Bhe 3N3
VHIhbnhwb330XC I sXC3pYXRCI§oXNTRAOTY100kyLFwi aWRc I oxMX1dT iwd YXpwI JodcHl 1bHVKZS11c2VyL Thak]d3Vag2SekiLCIzdWI 104 I TeXNOZHOERGITYWLLOIQzNWVINZFS
MIMOLTI300gWOGYRODF kM1l s ImRvbMF pbil611NSc3R1bSBED21hakaiLCI1c2VybaF tZSI6ImFkbWluakN@caF8b311LE IwZXItey I6WyIjc3AEb3INX211bM) 1ciTs ImVAdGVybmFs
NZCtNDE2ZilhZmIzLTY3MzZEXMZUAYZEIZSThdXRvDWFaWIuC2Vydal ZTplc2VyliwiZXh@ZXIuYwvMGNKNSISOTkt ZTMINLIOSYRIZL ThxMz Y tNTUXMIc SNmNZTVIL2NhdGFsb2cé
cmShbCakMzViMDk 2Ny 840V L TQyNTALODRNYy82Yz IkNTKSY 21N ¥vbhLncmF daksuon2pZd1ci Ts Imvadayy bmF s L 20z MW IwOTY 3L Tg1 ZWMHtNDT IMCOANGF JLTZ0W010T 1 iNmI 2
YWRtaWdiLCI1eHR] cmShbea NzR CILTQuNmY L YWZiMy rbni1cnZpY2Ubde]l1d2vy Tiwi ZXhOTXI uYev I F ZTESIGYTNDUSOC
MDg2Yzd1YWNmL29yY2h1c 3Ry YXRpb246YWRtak41LCI] eHR] cmShbCIMMWNIODLKZ i BONTCAL TRINGELOTImOC11Z JMe0DZIN2VIY2Y Vb 3T jaGVzdHI hdGlvbipkZXNpZ251cilsImvd
YZEILWEXHZCtNDE2Zi1hZmIzLTY3IMZEXMZUAYZE 3255hdXRvbWF8aksuc2Vydml j2TpjbGa12FohZG1pbils IaVAdGVybnFsLzBIZDZi0TkSLIWUZNZYENG] iMyB5MTMLTUIMTII0TZ
iIsImVadGVybmF TEALTKINTQ yLTBLOTg30GI MGV IN: 1 iIsImvadGVybmF TEALTKINTQ

COINNGYHISDb2ZR1IUIRY ZWF tOSFKEWlUaXNGCRFObI 11 LCI leHRLcmShbCBWY2Q2Y k5051 IMZc 2L TRAY JMEOTEZNIGINT EyNZk2YZNINGMVY 2F @Y WxvZZplc2Vy I lesImivbnRleHR
ML M3V 2UtHDAR YY1 iMTd LWQxZ THWYmU2N2 T22C T s ImF §¥ 30101 JhZG1pbm] 2dHI hdGIyIng .

Oohbs7GebPY3MbvCh =6 FSCIm (70F - A97DY7tapph OE3QUIVBE IQRpD_0F tviSMMBPCgVU- oLofdm]cdvMsMebl -6 hHe 14F Tn5Ge gZhwiMeMUXg FYENSH
KHNV@UoT2KaYIsL-Z qzaUQlcpezQRhPg2PSERFYX_IwXchfLcaZlHaYv-1609yRrVVZLEeCO-yH_SXB2e_mjIimkruQMsWTANWSOB1oUAK - JHIYBiigIoLljo6rEpp2pw]vtD
Ebcvy3bCAbZIZtFiENGEBINYIZAPMA™,

4 “refresh_token": “DQI@2UMQe0@YQEDYtDbSje2vXGRasqit™,
5 “id_token": “eyJ@eXai0iIKV1QiLCIhbGCi04iISUZIINATSImtpZCI61IQrODUZMFEZMDMSOTCZMTISNCcifQ.

ey 2dWIi0i 1 TeXNOZWOGRGITYWLUOTQZNWY IHZF JLIQ2 2 QEHDI INCASMIMAL TI J00EWOGYRO0F kM1 15 Iml 2y 16 TkNOPVEY ZWx 1 ZGLgSWR 1 bnRpdHk gU2Vydml ZSxPYT1DTUIVLESS
AWEsULQPU29maNE sQz1CRy I s ImF1ZCT6InBy ZWx 126Ut dXNLc iBaWlo3d1dINkpp iwiZXhwl joxNTk40TYZMDEYLC IpYXQIOJE10TESNIULOTI s InF 1dGh FAGLZSIGMTUSODKNTES
ZSI6ImFkbWluaXNacmFob31iLC ImyilpbH]foeF t2S16 InFkbiluaxNecmFob3 LilC) 1bwF pbCl6 ImNvbmZpZ 3V IXIAdM13YX] 1LatvbSTs ImvtyWl sX3Z1cmlmawviIjpecnviLcIn
Wy IBTEWEVVNFULMIXSwiZ 3IvdXBfabRz] §pbljcyZDEXM2QyL TRINZENGU3NCEMMT EyL TQuNZC 3MTUZMGY 3My 1dLC 1 b2 50Zxhex25hbWUi0i IyoD] iNzF 1241 HZMILTQ3ZGHEYIES
M20iLCI1e2VybaFtZS16ImFkbWluaXnacmFabI11LCINY2ZNOT joivWREaWSpe 3RYYNRVE 1 15 ImRvbWFpbiT6IINSc 3R] BSBEB2 1hakai fQ.
DkK63RZQwSON2FO_45B_XsC74uul0fm-wqvhnTDyQ2hl SAYpEWPEPE@ZLBEHIGL220HYQE1 7K 1K HmE_9QAGT LyW2auhPadssFD7vAVIShtHGAt t1ZKYwpFqFQea_QilhxikTznR160
_Uarx7RmTEYV-Hgx_30x]rlTAdnMsGxE f ZO8MdEnGUIgEpsY Tm-wEloyWVrtdmgyL yk BasSnL1hAaSPVFMGYExZIP0vINSS _2GCsgocmd2dLOWEgOEREiStLrQIVi2cBZmAey - pAnSoal
@eH_DqBIHUMIMSGOC1255aT1QLn9A",

6 “token tvoe": “Bearer”.

24

VRealize Automation 8.x Extensibility Migration Guide

Retrieve a project ID

GET v httpsd/ism-vra8l.sqalocalfiaas/api/projects

Params Authorization @ Headers (8) Body Pre-request Script Tests Settings

TYPE o Heads up! These parameters hold sensitive data. To keep this data secure while working in a collaborative environmer

Bearer Token = recommend using variables, Learn more about variables

The authorization header will be automatically
generated when you send the request. Learn Token eyj0eXAIOJKV1QILCnbGLOUSUzI T NilsImipZCi6l QO DUZME2ZMDMSOTezN

3ody Cookies Headers (11) Test Results @ Status 2000k Time: 832ms Size! 1.64KB

Pretty Raw Preview Visualize JSON v =

w4 LPULLELL § Ty,
42 "storageLimitGB": @
a3 b
4 (
45 “zoneld": “fSbefddec-fb62-4e05-b996-elbdi2feldls”,
46 “priority”: o,
47 “maxNumberInstances”: @,
48 "memoryLimitMB": @,
49 "cpuLimit™: @,
5@ “storagelimitGe": @
51 }
52 1.
53 “constraints”: {},
54 “pperationTimeout™: @,
55 “machineNamingTemplate®: "${usertame}-S{sex}",
56 “sharedResources™: true,
57 “name": “Quickstart Project 1",
58 "description”: **,
59 “id": "eb504179-9a70-4532-ba3c-d96@48683351",
68 “organizationld®: “289b71ef-c7c5-47dc-bl7c-dle3ebes723d",
61 “orgld®: “289b71ef-c7c5-47dc-b17c-d1elobes723d",
62 *_links®: {
63 “self": {
64 “href": "/iaas/api/projects/@b584179-9a7@-4532-bd3c-d96848683351"
65 }
66 }
67 }
68 N
69 “totalElements”: 2,
78 “numberofElements”: 2
7§

VMware, Inc.

25

VRealize Automation 8.x Extensibility Migration Guide

Retrieve a list of catalog items by using a project ID

GET * hitpsd/sme-vragl.sga.local/catalog/api/items/7projects=00504179-9a70-4532-b43c-d96048683351
Params @ Authorization @ Headers (B) Body Pre-request Script Tests Settings
KEY VALUE DESCRIPTION
projects 0b504179-9a70-4532-b43c-d96048683351
lody Cookles Headers (11) Test Results @ Status: 2000K Time: 856ms Size: 1.75KB

Pretty Raw Preview Visualize JSON » =

18 "lastupdatedBy”: “system-user®,

19 "iconld™: “1495b8d9-9428-3046-9626-18FF9281645e",

Fi} “bulkRequestLimit™: 1

21 b

22 {

3 "id": "PecESede-53fa-34cf-8§77b-fE6521d6ddde",

24 "name”: "Apache Install http”,

s "type™: {

26 "id": “com.vmw.vro.workflow",

27 "1ink™: "/featalog/api/types/com.vew.vro. workflow”,

28 “name™: "vRealize Orchestrator Workflow"

29 e

3@ "projectIds™: [

31 “abSe4179-9a70-4532-ba3c-d96048683351"

32 1

33 “createdAt™: “2028-87-87T21:20:38.5570862",

34 "createdBy”: “administrator”®,

35 “lastupdatedat™: "2020-29-01T09:49:03,7247492°,

36 “lastUpdatedBy”: “system-user™,

7 "bulkRequestLimit™: 1

8 }

3 %

40 “pageable”: {

41 “offset™: 9,

42 "sort®: {

43 "unsorted”: true,

F7y “sorted": false,

45 “empty": true

2 b

a7 "queryInfo™: {

48 "customsOptions”: {},

VMware, Inc.

VRealize Automation 8.x Extensibility Migration Guide

Look up a catalog item that uses a custom form

GET v https:/fsm-vraBl sqalocalform-senice/apifformsifetch BySourceAndTypesourceld =0ec6500e-531a-34cf-877b-f6652 1 dbdd4eBsource Type=com.wn Save
Params @ Authorization & Headers (B) Body Pre-request Script Tests Settings <
Query Params
WEY VALUE DESCRIPTION s*¢ | Bulk
sourceld OecE500e-53f2-34cf-BT7h- 16652 1 dbddde
sourceType comymw.vro.workflow
formType requestForm
formFormat YAML
Jody Cookies Headers {11) Test Results & Status: 2000K Time: 188ms Size: 2.65KB Sawve Respons
Pretty Raw Preview Visualize JSON v+ []

1 {

2 “id": "dd4346ef-bd19-440a-92e9-95F9216F2cad",

3 "name™: “Apache Install http",

4 “form™: “layout:\n pages:\n - id: \“page_general\“\n title: \“General\™\n sections:\n = id: \“section_deploymentHame\"\n fields:\n - dd:
\“deploymenthame\"\n display: \"textField\"\n state:\n visible: true‘n read-only: false\n - id:
\“section_deseription\”\n fields:\n - id: \“deseription\"\n display: \“textarea\"\n state:\n visible: true\n
read-only: false\n = id: \"section_project\"\n fields:\n = id: \"project\“\n display: \"dropDown\"\n state:\n visible:
truehn read-only: false\n = fd: \"section_swa_envi"\n fields:\n = 4d: \"swa_env\"\n display: \"textField\™\n
state:\n wisible: true\n read-only: false\n = id: \“section_Hostname\"\n fields:\n - id: \“Hostname\"\n display:
\“textField\"\n state:\n visible: true\n read-only: false\nschema:\n deploymentame:\n label: Y"Deployment Name'\™\n
description: \“Deployment Mame\"\n type:n dataType: \“string\™\n fzMultiple: false\n eonstraints:\n required: true\n max-value:

88'n description:in
constraints:\n

label: \“Description)™\n description: \"Description\®\n

max-value: 256'\n project:\n label: ‘\"Project\"\n
ismultiple: falsein valueList:\n id: \“projects\“\n type: \"scriptAction\™\n constraints:\n
\“environment\"\n type:\n dataType: \“stringi"\n isMultiple: false\n default:\n
constants/list_environments'"\n paraseters: []\n Hostname:\n label: \“Hostname\"\n
false\noptions:in externalvalidations: []in®,

5 "sourceType”: “com.vew.vro.workflow”,

[“sourceld”: "Gec6500e-53fa-34cf-877b-f66521d6dd4e"™,

7 “type™: “requestForm®;

B "2850b71ef-cTe5-47dc -b17c-dledbbe6T23d",

9

type:\n dataType: \“string\™\n
description: \"Project\™\n type:\n dataType: %\
required: true\n
type: \"scriptaction\”\n
type:\n dataType: \"string\"\n

“tenant”
"status®: “ON",
18 “createdDate”: “2020-98-27T19:24:132, 49940080,
11 "modifiedDate™: "1O20-08-27T19:27:05.455+0000"

Run a script action in a custom for to retrieve data

POST * httpsi/fsm-vra8l.sqa.localform-service/apifforms/renderer/external-value?projectid=0b504179-9a70-4532-b43c.d96048683351
Params @ Authorization & Headers (11) Body @ Pre-request Script Tests Settings
® none @ form-data @ x-www.form-urlencoded ®raw @ binary @ GraphQL JSON ~
vk
2 "contextParameters": {},
3 "datasource”: “"scriptaction”,
4 "parameters": [],
5 “requestId™: @,
6 "uri®: "com.veware.constants/list_environments"
7 B
3ody Cookies Headers (11) Test Results B Status: 200 OK
Pretry Raw Preview Visualize JSON ~ 5
1
2 “data": “DEV",
3 “requestld”: @
4 §

VMware, Inc.

isMultiple: false\n
“string\"\n

swa_env:\n label:

id: \"com.vmware.
isMultiple:

Tim

4208

27

VRealize Automation 8.x Extensibility Migration Guide

Submit a cloud template request

vRealize Automation 8.1 and later forms service API does not support form execution. You cannot
request a catalog item that uses a custom form to capture user inputs. As a workaround, you can

use two API calls:
m Form service API to retrieve input data.

m Cloud template API to submit the request.

Note Cloud templates were previously known as blueprints.

POST v hups/ism-raBl.sqa.local/blueprint/api/blueprint-requests
Params Authorization @ Headers (11) Body @ Pre-request Script Tests Settings
® none @ form-data @ xwww-form-urlencoded @ raw @ binary @ GraphQL JSON +

1 A

2 "blueprintId™: "48c08419-aba8-4290-850b-2F886a42¢1c3",

3 “deploymentName™: “maksl22°,

4 “gescription™: “test iaas deployment=,

H "inputs™: {

6 *cpuCount™ : "2°,

7 "totalMemoryMB8™: “2048"

g

9 3

10 | "projectld”: "90504179-9a70-4532-b43¢-d96048683351",

11 *reason™: “"test again®,

12 "simulate”: false

13 ¥
ody Cookies (1) Headers (12) Test Results E Status: 202 Accepted
Prewy Raw Preview Visualize JSON +~ 5

1 f

2 "id": "707€03ce-¥d87-488d-97¢0-476c384fbade",

3 "createdAt™: "2020-99-15T16:308:02.1272",

4 "¢reatedBy™: "administrator”,

5 “updatedAt™: “2020-99-15T16:30:02.127Z7,

6 "updatedBy=: “asdministrator®,

7 "orgld®: =289071ef-c7c5-47dc-b17c-dle3dbe6723a",

8 "projectla™: "@b5e4179-9270-4532-b43c-d96048683351",

9 "projectName”: "Quickstart Project 1-,

1@ "ceploymentIa™: "S2005767-7457-4F02-8267-8ac9¢107868e",

11 "requestTrackerId™: "707f@3ce-fd87-488d-97e0-476¢384fbade",
12 “deploymentiame™: “maks122°,

13 "reason™: "test again®,

14 "gescription™: "test isas deployment™,

15 "plan=: false,

16 "destroy®: false,

17 “ignoreDeletefailures™: false,

18 "simulate”: false,

19 "blueprintlca”: “42c00419-aba8-4090-850b-2F6886042¢1c3",

20 *inputs®: {

21 “couCount™: "2-,

VMware, Inc.

28

Using Dynamic Types with
Custom Resources in vRealize
Automation Cloud Assembly

You can expand the functionality of your vRealize Automation Cloud Assembly templates by
using dynamic types-based custom resources.

When you create cloud templates in vRealize Automation Cloud Assembly, you can use different
Resource Types. Examples of Resource Types include Amazon S3 Buckets, Cloud Agnostics
Machines, NSX networks, vSphere Virtual Machines, Microsoft Azure Resource Groups, and
others.

You can use vRealize Automation Cloud Assembly to create custom resources for use cases that
are not covered by the preconfigured Resource Types.

Each custom resource is based on a vRealize Orchestrator SDK inventory type and is created by
a VRealize Orchestrator workflow that has an output which is an instance of your desired SDK
type. Primitive types, such as Properties, Date, string, and number are not supported for the
creation of custom resources. You can add custom resources to your cloud template design
canvas for use during you lifecycle extensibility deployments.

Note SDK object types can be differentiated from other property types by the colon (":") used
to separate the plug-in name and the type name. For example, AD:UserGroup is a SDK object type
used to manage Active Directory user groups.

For more general information on vRealize Automation Cloud Assembly custom resources, see
How to create custom resource types to use in vRealize Automation Cloud Assembly cloud
templates in Using and Managing vRealize Automation Cloud Assembly.

The sample workflows included with the sample package in this guide, contain a generic
implementation for basic dynamic type objects. The dynamic types sample code creates the
object definition, including the dynamic types namespace, if required. All instance of the defined
objects are stored in a custom resource as a JSON string. This approach can help speed up
vRealize Automation custom resource prototyping with dynamic types.

The current guide includes a use case that demonstrates this functionality with a example based
on storing additional matadata related to web servers that are deployed by vRealize Automation
8.x. In this use case, you use a dynamic types based custom resource to store information about
the website that the deployed web server hosts.

VMware, Inc. 29

vRealize Automation 8.x Extensibility Migration Guide

This chapter includes the following topics:
m Creating the Dynamic Types Configuration
m Dynamic Types Object and Custom Resource Requirements

m Create the Dynamic Types Custom Resource

Creating the Dynamic Types Configuration

Before you can begin creating your custom resource, you must first create the necessary
dynamic types configuration.

The presented configuration is created through the dynamic types plug-in. To create the
configuration, run the ConfigureDynamicTypes workflow included in the sample package. The
dynamic type configuration has the following parameters:

Parameter Type Value

Namespaces Websites

Object Type Site

Properties for Site object domain, host, euro, lease

Note The dynamic types plug-in only supports strings as
property values.

Object Type SiteFolder

Note All dynamic types objects are required to have a
parent folder, so you are required to create a SiteFolder
object.

Relationship SiteFolder-Site

The above parameters represent the inputs of the working example. You have the Websites
namespace and an object type called Site. In addition to these input parameters, you are also
specifying four additional properties, host, euro, domain, and lease, that are configured with the
default name and ID properties. In the vRealize Orchestrator inventory the objects that are
created are listed with the name property displayed.

When this workflow finishes running, you can navigate to the inventory section of the vRealize
Orchestrator Client and review the dynamic types inventory. In the inventory, you should see the
Websites namespace and the SiteFolder parent folder.

Dynamic Types Object and Custom Resource Requirements

After configuring the dynamic types plug-in, you can create some dynamic types object to test
the new dynamic types configuration.

VMware, Inc. 30

vRealize Automation 8.x Extensibility Migration Guide

You can create an instance of your new dynamic types object by running the Create Website
Object workflow that is included in the sample package. This workflow creates a dynamic types
object called websites Site, which includes the input parameters required for your custom
resource.

Note The Create Website Object workflow generates an ID for the newly created object if no ID
is supplied when first calling the action. Depending on your use case, you might want to supply
the ID for these objects by specifying the ID property when creating the object.

Note The object types follows the namespace.object format. For this use case, the object type
would be Websites.Site.

When the workflow finishes running, you should see the new object in the dynamic types plug-in
inventory under the Sites folder.

The data backing the object displayed in the dynamic types inventory is saved as a custom
resource under the VMware/PVE/dynamictypes/dataPersistance folder.

Regarding the custom resource itself, there are key requirements for Create and Delete
workflows:

m The Create workflow must have string type inputs for each required object property.
m The Create workflow must have a dynamic types object as the only output for the workflow.
m The Delete workflow must have single dynamic types object input.

The sample package has workflows for both create and delete website objects.

Create the Dynamic Types Custom Resource

After configuring the dynamic types plug-in and creating some test objects, you must create the
custom resource definition in Cloud Assembly.

Procedure

1 In Cloud Assembly, select Design > Custom Resource, and click New Custom Resource.

VMware, Inc. 31

vRealize Automation 8.x Extensibility Migration Guide

2 Provide the following values:

Setting Sample Value

Name Website
This is the name that appears in the cloud template
resource type palette. You can use another name if
desired.

Resource Type Custom.website
The resource type must begin with Custom. and each
resource type must be unique.
Although the inclusion of Custom. is not validated in the
text box, the string is automatically added if you remove
it.
This resource type is added to the resource type palette
so that you can use it in the cloud template.

Activate To enable this resource type in the cloud template
resource type list, verify that Activate option is toggled
on.

Scope Define if you want this custom resource to be shared

across projects or specific to a single project.

Lifecycle Actions - Create Select the Create Website Object workflow.

If you have multiple vRealize Orchestrator integrations,
select the workflow on the integration instance you use
to run these custom resources.

After selecting the workflow, the external type drop-
down menu becomes available.

Note An external source type can be used only once if
shared and once per project. In this use case, you are
providing the same custom resource for all the projects.
It does mean that you cannot use the same external type
for any other resource types for all projects. If you have
other workflows that require the selected type, you must
create individual custom resources for each project.

Lifecycle Actions - Destroy Select the Delete Website Object workflow.

3 To finish creating the custom resource, click Create.

Results

You have created a sample custom resource definition that uses the dynamic types plug-in.

What to do next

When you create a cloud template, the website object should now be available from the left
resource pane and can be dragged into the cloud template canvas. After deploying the cloud
template, a instance of the site object is displayed in the dynamic types plug-in inventory.
Similarly, if the deployment is destroyed, the instance of the site object is removed from the from
the dynamic types plug-in inventory.

VMware, Inc. 32

Lifecycle Extensibility

vRealize Automation provides pre-defined application and services life cycles operations with
some level of applicable configurations. However each customer has specific processes and
integrations that require customizing this life cycle via extensibility.

In vRealize Automation 7.x and vRealize Automation 8.x lifecycle extensibility is applied through
the Event Broker service. The most common use case are related to the machine provisioning hat
supports different subscriptions including for example:

m Pre-provisioning to take action on third party systems or to modify the provisioning
configuration.

m Post-provisioning to run an operation on the provisioned resources.
m Notify or record request provisioning data in external systems.
Event Broker subscriptions exist in vRealize Automation 8.x, but they:

m Use different event topics. vRealize Automation 8.x event topics are similar to vRealize
Automation 7.x event topics, but are not identical.

m VvRealize Automation 8.x subscriptions use different payload to pass parameters.
m VRealize Automation 8.x subscriptions use different metadata.

m VRealize Automation 8.x subscriptions use a different approach to create criteria to filter the
cases where the subscription start a workflow.

m Action-based extensibility can be used to provide function as a service (FaaS) operations for
on-premises and cloud deployments.

Because the vRealize Automation plug-in for vRealize Orchestrator is not supported for 8.x, the
following use cases require modification for them to work in vRealize Automation 8.x

m Query further information from payload data. This can be achieved by using the REST API.
m Run operations on vRealize Automation. his can be achieved by using the REST API

m Add or update custom properties. This can be achieve by setting the relevant workflow
output parameter in events supporting the customProperties output.

VMware, Inc. 33

VRealize Automation 8.x Extensibility Migration Guide

vRealize Automation 8.x provisioning event topics are redesigned with a set of deployment high
level topics calling deployment resources topics:

Provision 1 l 1
Deployment Resource Deployment Resource Deployment Resource (Load
(Network) (Compute) Balancer)
Deployment ’
Deployment Resource Deployment Resource
Requested Requested
Deployment Requested
Network Provision Load Balancer Provision
Compute Reservation
Network Post Provision Compute Post Provision Load Balancer Post Provision
Compute Allocation
Deploymant Resource Deployment Resource
Completad Compileted
Network Configure I—
Deployment Resource (Security Group)
Removal
Deployment Resource (Load
Deployment

Deployment Resource

Deployment Resource
Requested

Requested

Load Balancer Removal

Network Post Removal Load Balancer Post Remcoval

Daploymant Resource

Deployment Resource
Completed

Completed

L

Deployment Resource (Securlty Group)

This chapter includes the following topics:

m Migrating Subscriptions from vRealize Automation 7.x to vRealize Automation 8.x
m Creating a Subscription

m Create a Wrapper Workflow

m Testing the Subscription

VMware, Inc. 34

vRealize Automation 8.x Extensibility Migration Guide

Migrating Subscriptions from vRealize Automation 7.x to
VRealize Automation 8.x

You can migrate Event Broker subscriptions from vRealize Automation 7.x to vRealize

Automation 8.x.

For vRealize Automation 7.x event topics that have equivalent topics in vRealize Automation 8.x,
you can use the vRealize Automation Migration Assistant.

You can also migrate event topics manually by using the following mapping as reference:

vRealize Automation 7.x Workflow State

Catalog request received
N/A
N/A

N/A

Blueprint component requested

Requested
WaitingToBuild
BuildingMachine PRE

BuildingMachine POST
MachineProvisioned

MachineActivated
Blueprint component completed
Catalog Item Requested completed

N/A

N/A

Deactivate
Unprovision

Disposing Pre

Disposing Event

Disposing Post
N/A
N/A
N/A
N/A
N/A
N/A

Power Off

VMware, Inc.

vRealize Automation 8.x Event Topic

Deployment requested
Compute.Reservation.Pre
Compute.Allocation.Pre

Network.Configure

Deployment resource requested

Compute.Provision.Pre

Compute.Provision.Post

Deployment resource completed
Deployment completed

Deployment requested

"eventType": "DESTROY_DEPLOYMENT"

Deployment resource requested
"eventType": "DELETE_RESOURCE"

Compute.Removal.Pre

Compute.Removal.Post

Deployment resource completed
Deployment resource requested
Network removal

Network post removal
Deployment resource completed

Deployment completed

Notes

None

Changes Placement
Overrides Allocations

Network selection and
overrides IPAM Integration

None

Deployed before the instance
was deployed

Posts the machine online

None
None

None

Before a machine is destroyed

Post machine destroyed

None
None
None
None
None
None

None

35

VRealize Automation 8.x Extensibility Migration Guide

On - EVENT Deployment resource action requested None
On - POST "actionName": "PowerOff"

TurningOff - PRE "status": ""

TurningOff - POST Deployment resource action completed None
Off - PRE "actionName": "PowerOff"

"status": "FINISHED"

Power On None
On - EVENT Deployment resource action requested None
On - POST "actionName": "PowerOn"

TurningOff — PRE "status": "

N/A Deployment resource action completed None

"actionName": "PowerOn"

"status": "FINISHED"

Creating a Subscription

You can use event topics as part of Event Broken subscriptions to define lifecyle extensibility.

To select the most appropriate event topic it is important to evaluate if the event is triggered at
the right step of the process and if it carries the payload necessary to perform the extensibility
operation.

The payload can be identified with selecting the different event topics.

The Read Only - No tag is used for properties that support both read and write operations. With
read and write operations, it is possible to use a workflow output to set the property back in
vRealize Automation. To do this, it is mondatory to set the subscription to be blockable. For more
information on blackable extensibility subscriptions, see Blocking event topics in Using and
Managing vRealize Automation Cloud Assembly.

The following are some of the event topics support setting properties:

= Compute reservation is used to change the placement.

= Compute allocation is used to change resource names or hosts

= Compute post provision is used to after deployment resources are provisioned.

= Network configure is used to set the network profile and individual network settings.

For more information on event topics included in vRealize Automation 8.x, see Event topics
provided with Cloud Assembly in Using and Managing vRealize Automation Cloud Assembly.

Extensibility subscriptions in vRealize Automation 8.x work similarly to the subscriptions included
in vRealize Automation 7.x. However, there are some key differences:

m You cannot bind a workflow for all events anymore.
m The conditions for running the subscription are now based on JavaScript.

m You can subscribe per project or for any project by using shared subscriptions.

VMware, Inc. 36

VRealize Automation 8.x Extensibility Migration Guide

m You can set a recover workflow in case the subscription workflow fails
m Timeout behavior is similar with differences highlighted below:

m VRealize Automation uses a timeout for the workflows being started by Event Broker
blocking subscriptions. If a workflow run lasts more than the set timeout period, then it is
considered failed by vRealize Automation.

m |n vRealize Automation 7.x, the default timeout value for all states and events is 30
minutes and is configured in the vRealize Automation global settings.

m |In both vRealize Automation 7.x and vRealize Automation 8.x a timeout value can be set
at the subscription level.

Note The default timeout period in vRealize Automation 8.x is 10 minutes and that you
should change the project request timeout if it is lower than the subscribtion timeout.

m In VRealize Automation 7.x, it is also possible to configure individual state and event
timeout values by changing configuration files in the laaS server.

m Priority defines the order of running blocking subscription where O means highest priority and
10 means lowest priority. The default value is 10.

Create a Wrapper Workflow

Some vRealize Automation operations require you to create a wrapper workflow in vRealize
Orchestrator.

You can design a wrapper workflow from scratch or duplicate the sample Event Broker template
workflow included in the sample package and modify it as needed.

We call it the "wrapper" workflow because it is often a workflow that connects vRealize
Automation to vRealize Orchestrator workflows. For example, extracting data from the payload,
finding a VM object in the vRealize Orchestrator inventory by ID, and starting another workflow
by taking the action on this VM.

The first requirement for creating a wrapper workflow is that it must have the single payload
input of type Properties named inputProperties. This is different from vRealize Automation 7.x
where the input can be named anything as long as it was of type Properties.

In this wrapper workflow, you might need to retrieve particular information from the
inputProperties input or system context metadata. Similarly to vRealize Automation 7.x, this is
done with the inputProperties.get(parameterName); and
System.getContext().getParameter("metadataName"); methods except the parameter and metadata
names are changed and can be identified in the Event Topic and Workflow Run tabs in Cloud
Assembly.

A good practice for wrapper workflow is to have a first "Get payload and execution context"
element (either scriptable task or action) that retrieves the required information. You can bind
these elements as a output to the workflow variables and use them as input parameters in
subsequent elements, such as scriptable tasks, actions, and workflows.

VMware, Inc. 37

vRealize Automation 8.x Extensibility Migration Guide

Retrieving the individual properties from from the Properties type InputProperties is done
through the GET method.

The returned properties value can be of the type string, number, boolean, or an array of any of

these or complex properties which maps to Properties type in vRealize Orchestrator.

Many of these properties are object IDs that need further processing to retrieve useful
information.

For example, retrieving some information from the catalog is done as follows (code snippet from

the Create an Event Broker subscription workflow sample):

var catalogItemId = inputProperties.get("catalogIltemId");
if (catalogItemId != null && catalogItemId !="") {
var catalogItemObject = getObjectFromUrl("/catalog/api/items/" + catalogItemld);
if (catalogItemObject !'= null) {
System.debug(getPropertiesText(object2Properties(catalogltemObject), "Catalog Item\n", 1));
System.log("CatalogItem ID : " + catalogItemObject.id);
System.log("CatalogItem name : " + catalogItemObject.name);

System.log("CatalogItem description : " + catalogItemObject.description);

System.log("CatalogItem type name : + catalogItemObject.type.name);

System.log("CatalogIltem created By : + catalogItemObject.createdBy);

This example can be used to retrieve a vCenter VM (code snippet from the Create an Event
Broker subscription workflow sample):

try {
if (inputProperties.get("componentTypeld") == "Cloud.vSphere.Machine") {
var vcUUID = inputProperties.get("customProperties").get("vcluid™)
var vmUUIDs = inputProperties.get("externallds");
for each(var vmUUID in vmUUIDs) {
vCenterVM = System.getModule("com.vmware.vra.extensibility").getVCenterVMByUUID(vcUUID,
vmUUID) ;
if (vCenterVM != null) {
System.log("Got vCenter VM " + vCenterVM.name + " with ID " + vCenterVM.id);
}
}
}

} catch (e) {
System.warn(e);

This example can be used to retrieve metadata properties below (code snippet from the Create

an Event Broker subscription workflow sample):
// The execution context is where the VRA extensibility metadatas are passed

var executionContext = System.getContext();

// Getting specific execution context parameters

VMware, Inc.

38

vRealize Automation 8.x Extensibility Migration Guide

var eventTopicId = executionContext.getParameter("__metadata_eventTopicId");
var eventId = executionContext.getParameter("__metadata_id");

var isEventBlocking = executionContext.getParameter("__metadata_hdr_blocking");
var orgld = executionContext.getParameter("__metadata_orgId");

Read and write parameters can be configured by creating workflow outputs matching their name
and types.

Another important element of working with wrapper workflows is using tags. The following
example shows you how you can add a tag:

// Adding TAG

tags = inputProperties.get("tags");

if (tags == null) tags = new Properties();
tags.put("serviceLevel”, "Gold");

The payload and metadata parameters values and the output values set by your workflow can
be monitored by navigating to Extensibility > Activity > Workflow Runs.

The sample workflows include a Create an Event Broker subscription workflow, which can be
used to automate the creation of subscriptions, and a Create sample "Event Broker Template"
subscriptions workflow, that creates a subscription for each event topic starting the Event Broker
Template workflow. This workflow provides the following capabilities:

m Displaying the content of the payload.
m Displaying the content of metadata.

m Provides an example on reaching back to vRealize Automation to retrieve the properties of
the objects provided as IDs in the payload.

m Provide an example on converting payload IDs to vRealize Orchestrator objects to bind the
operation workflow on the object. You can use this to convert to VC:VirtualMachine to create
a shapshot.

m Display the parameters that support being changed with workflow outputs.
m Update custom properties.

m Update tags.

s Update VM names.

m Get host selections.

Testing the Subscription

You can test your extensibility subscription by running a test deployment of a cloud template.

VMware, Inc. 39

VRealize Automation 8.x Extensibility Migration Guide

vRealize Automation 8.x provides more information on running workflows with subscriptions in
comparison to vRealize Automation 7.x. By navigating to Extensibility > Activity > Workflow
Runs in Cloud Assembly, you can verify:

m The payload input properties and their values passed to the workflow.

m The output properties and their values passed from the workflow back to vRealize
Automation.

m The metadata and its values passed to the workflow.

The Cloud Assembly cloud template designer supports a "TEST" cloud template in addition to the
"DEPLOY" cloud template. For test use cases, a metadata key __metadata_hdr_mock set to true is
provided to the workflow for the following event topics:

m Disk allocation

m Compute reservation

m Compute allocation

m Network Configure

s Compute removal

m Compute post removal
m Network removal

m Network post removal

You can use this property to run a specific part of the workflow when using the "TEST" mode.

VMware, Inc. 40

Onboarding a Customer
Organization

There are several key concepts and requirements, you must be aware of before onboarding a
customer organization.

There is a significant amount of configuration involved in setting up Infrastructure as a Service
(laaS) so it can make resources available to end users. In vRealize Automation 7.x, configuration is
done with business groups, reservations, and so on.

Many vRealize Automation users have automated onboarding for customers which includes
importing data from other systems and using specific naming conventions.

In vRealize Automation 8.x, the concepts for assigning resources and providing entitlements to
content have changed. Now this is done with projects, zones, and flavors. All of these
components are listed under the Infrastructure tab of Cloud Assembly.

vRealize Automation 8.x includes a guided setup wizard that guides you through the steps
needed to create a cloud account, project, zone, and images by assigning a default configuration.
To access this wizard, click Guided Setup on the top-right of the user interface.

While this wizard is useful for getting started, it does not address the organization onboarding
scenario as some steps require end user inputs, external integrations and further granularity for
some settings.

Configuring the onboarding organization infrastructure is done by automating the creation of the
required objects, such as cloud accounts, projects, zones and others. This process can include
the entire configuration or only the setting up the components where automation and integration
provides more value.

This must be done by creating individual workflows or actions that create each object as needed.
Afterwards, these objects are incorporated on a master workflow, that automates the whole
process.

This process must follow as specific order, because some objects are dependant on other
objects existing first. The order is as follows:

1 Cloud account
2 Zone

3 Project

VMware, Inc. 41

VRealize Automation 8.x Extensibility Migration Guide

Flavor mapping

4
5 Image mapping
6 Network profile
7 Storage profile

Deleting objects must also follow a specific order, because you cannot delete an object that is
being used or referenced by another object. This process also has more steps than the
deployment workflow as it requires deleting all the objects that can possibly be created by end
users, such as deployments, Code Stream pipelines and others. The following is a non-exhaustive
list of objects based on deletion order.

1 Integrations
User operations
Pipelines
Endpoints
Variables
Action runs
Workflow runs

Subscriptions

© 00 N o 0 b~ w N

Extensibility actions

o)

Storage profiles

11 Drafted cloud templates

12 Deployed cloud templates

13 Deployments and resources

14 Projects

15 Zones

16 Cloud accounts

Note The delete operation might not always finish before the deletion of the resources. It might
be necessary, in case of deletion failure because of dependent resource not yet deleted, to wait

further in the workflow before retrying deletion. Also, to delete a project, you must first patch it
to remove the dependencies on all its zones.

This chapter includes the following topics:

m Onboarding a Project

VMware, Inc. 42

VRealize Automation 8.x Extensibility Migration Guide

Onboarding a Project

This topic includes a scenario that demonstrates how you can onboard a project.

This scenario goes through the steps needed to automate the repeatable components of
onboarding a project in vRealize Automation to enable self-service consumption.

The following diagram presents the main flow of this scenario:

Sync vIDM Directory Create VRA Project

Tag Project

Update Cloud Zones

Assign Cloud Assembly
and Service Broker
Member Roles

Assign Catalog Items to
project (optional)

Sychronizing the vIDM Directory

Synchronize with the vIDM directory by using a POST API call.

VMware, Inc.

43

vRealize Automation 8.x Extensibility Migration Guide

This scenario is optional depending of your end to end process, but if you are also automating
the creation of Active Directory (AD) groups for the project, these groups must be synchronized
within the VMware Identity Management (vIDM) service before they can be associated to a
project for user access. In this use case, you are using the Lifecycle Manager (LCM) API to
perform the synchronization operation. LCM performs the downstream synchronization call to
VvIDM.

The call is perform by using the POST method with the following URL:
/1lcm/authzn/api/idp/dirConfigs/syncprofile/sync

The request itself has the following content:

"directoryConfigId": directoryld,
"directoryType": "ActiveDirectory",
"isGetBeforeUpdate": true,
"isTenantConfiguredByPath": true,
"vidmAdminPassword": password,
"vidmAdminUser": username,
"vidmHost": hostname

Creating a vVRealize Automation Project

While creating a project, you can also specify the users and administrators that are part of the
project.

You can create a project by using a POST API call that uses the /project-service/api/projects
URL to create a project.

{

"administrators": [

{

"email": "${ADMINISTRATOR_VIDM_GROUP}",
"type": "group"

}

g

"members": [

{

"email": "${USER_VIDM_GROUP}",
"type": "group"

}

g

"viewers": [],

"zones": [],

"constraints": {3},
"operationTimeout": 0,
"sharedResources": true,
"name": "${PROJECT_NAME}",
"description": "",

"orgId": "${ORGANISATION_ID}",

VMware, Inc. 44

vRealize Automation 8.x Extensibility Migration Guide

"properties": {}

}

To run this command, the following information is required. AD groups should be synced by
using a directory configuration in LCM.

m The group name to be assigned the project administrators role.
m The group name to be assigned the project member role
m A name for the new project.

m The vRealize Automation organisation ID. This ID can be retrieved through with the vRealize
Automation API.

Associating a Tag with the Project

In this example, you are associating a tag with the newly created project. The tag is inherited
onto the workloads provisioned from this project.

To associate a tag with a object, you can use a PATCH API call that uses the /iaas/api/projects/$
{projectId}/resource-metadata URL.

{
"tags": [
{
"key": "costCode",
"value": "${costCode}"
}
]

}

Add Cloud Zones to the Project

The next step in the onboarding scenario is to add one or more cloud zones to the project. With
the API, you can add cloud zones.

You can add cloud zones by using a PATCH API call that uses the /iaas/api/projects/$
{NEW_PROJECT_ID} URL.

{

"zoneAssignmentConfigurations™: [
{

"storageLimitGB": 0,

"cpuLimit": 0,

"memoryLimitMB": O,

"zoneId": "${CLOUDZONE_ID1}",
"maxNumberInstances": 0,
"priority": 0

e

"storageLimitGB": 100,

"cpuLimit": 100,
"memoryLimitMB": 100,

VMware, Inc. 45

vRealize Automation 8.x Extensibility Migration Guide

"zoneId": "${CLOUDZONE_ID2}",
"maxNumberInstances": 20,
"priority": 0

}

]
}

Assign Cloud Assembly and Service Broker User Roles

Aside from assigning users at the project level, you must also assign the organisation role to
users within vRealize Automation Identity and Access Management service. You assign roles so
users have access to their required vRealize Automation services. In this use case, the services
are Cloud Assembly and Service Broker.

You can assign roles from within vRealize Automation when you first log in as an administrator by
navigating to Identity and Access Management and assigning the required service roles to the
user. For more information on editing user roles from the vRealize Automation user interface, see
How do | edit user roles in vRealize Automation in Administering vRealize Automation.

You can also assign roles by using a POST API call that uses the /csp/gateway/portal/api/orgs/$
{ORGANISATION_ID}/groups URL.

{

"ids": [

"${GROUP_ID}"

g
"organizationRoleNames": [
"org_member"

]!

"serviceRoles": [

{

"serviceDefinitionId": "${CLOUD_ASSEMBLY_SERVICE_ID}",
"serviceRoleNames": [

"automationservice:user"

"serviceDefinitionId": "${SERVICE_BROKER_SERVICE_ID}",
"serviceRoleNames": [
"catalog:user"

]

Assign Catalog Items to a Project

You can assign catalog items to a vRealize Automation 8.x project by using a API call.
To run the following API call, you must have the following information:

m The project ID. This is returned by the API call when the project is created.

VMware, Inc. 46

vRealize Automation 8.x Extensibility Migration Guide

m The cloud template ID. This ID can be attained by listing the cloud templates with GET
commands. If the values of these cloud templates are consistent, then this value can be
stored in vRealize Orchestrator or in a extensibility action.

You can assign catalog items to a project by using a POST API call that uses the /catalog/api/
admin/entitlements URL.

"projectId": "${projectId}",
"definition": {

"type": "CatalogItemIdentifier",
"id": "${BLUEPRINT_ID}",

"name": ,

"description":
"numItems": 0O,

"sourceType":
}
}

VRealize Orchestrator Implementation for Project Onboarding
Use a vRealize Orchestrator workflow to implement project onboarding.

The previous scenario for assigning a catalog item is implemented as a vRealize Orchestrator
workflow provided in the sample section under Organization infrastructure onboarding >
Project Onboarding. It covers all aspects of onboarding, excluding the optional vIDM
synchronization.

The following workflow creates laaS project with:

m Setting a single zone if this was provided as input. If no specific zone is provided as an input,

the workflow configures all available zones.
m Set the network constraint passed as a input parameter.
m Set tags and custom properties for cost code and project name provided as input.
m Set specific folders for the project and for the environment.
m Set a specific naming template.
m Set administrator and user groups.
The workflow also performs the following Service Broker updates:
m Create a specific content source for the project.
m Share this content source and other sharable content in this project.
Finally, the workflow performs the following Identity Management configurations:
m Assign admin group Cloud Assembly, Service Broker, and Orchestrator administrator roles.

m Assign user group Cloud Assembly and Service Broker user roles.

VMware, Inc.

47

VRealize Automation 8.x Extensibility Migration Guide

° 9

.Syn.ch dlreétorQ Synch Directary

© Got specific zone ID Set project Zone

assignment

& g 8

- Get zoneslds: - - ' Set project zone _.— - = createProject:
assignments ==
. _P___.-ﬂ"-_'-fff . . .
B o {:-}
s
Set project custom © - setProjectCustomProperties
properties
Fd
- - Settags properties -+ - - setProjectTagsFromProperties

' Service Broker content source-treation and entitlements

L A (5

createBlueprintContentSource - -getContentSourceldsElyErgjaetdf— -+ createContentSourceEntitlements:

Identity Management organization and ﬁmkeroTé};-asslgnments

& [T 0— 0

getOrganizationld Get user & admin Assign service roles
group names

Adding Resource Provisioning to a Project

You can use a vRealize Orchestrator workflow to add resource provisioning to your project.

VMware, Inc.

VRealize Automation 8.x Extensibility Migration Guide

The sample workflow Organization infrastructure onboarding / Organization Onboarding is a
front end for the project onboarding workflow that enables you to:

m Create a vSphere Cloud account.

m Create a zone for this cloud account.

- ® : g3 e

Create cloud account & Set content source Project Cnboarding
zone name
.

o @ o &

Set cloud Account vars Create Cloud Account Set zone vars createZone
viphere

The workflow inputs are separated in different tabs and include group search with filters.

If a cloud account and a zone are created they are assigned to the project, otherwise the
available zones from existing cloud accounts are assigned to the project.

Organization onboarding

Cloud account and zone Project Constraints Custom properties and tags
-

Project name * Pi45556

Project administrators group filter vra

Project administrators group * vra-ea-team

Project users group filter ME

Project users group * groupME

VMware, Inc.

Requesting Catalog Items

A key functionality of vRealize Automation is requesting catalog items.

A common scenario seen in vRealize Automation 7.x includes an XaaS catalog item requesting a
composite blueprint. While it is still possible to request a catalog item with the API service, this
scenario focuses on achieving the same result through customizing the request at runtime using
custom forms with dynamic selection of tags.

In vRealize Automation 8.x, form constructs are standardized around the vRealize Automation
custom forms designer. Given the change in vRealize Automation APIs with 8.x, this is a good
opportunity to remove previous technical debt as you transition and also standardize cloud
template deployment by using custom forms.

The below table summarizes some of the common patterns used for placement selection to
contrast the options and changes now available in vRealize Automation 8.x.

VRA 7.x - placement (custom logic) VRA 8.x - placement (standardized on tags)
B XaaS, custom forms, or laaS forms m Custom forms with tag based inputs
® APl - Compute Population of Reservation Policy Name and B API - Dynamic Tag selection based on keys
ID selection in code. and filters
m APl - Network — Based on naming conventions and m Alternatively. using Event Broker read or
reservations population of applicable network profiles. write properties.

m APl -Storage - Storage reservation population through
code.

In vRealize automation 8.x, placement logic is standardized by using tags, resources are tagged
with capabilities and constraints are applied to a cloud template for the placement engine to
select the relevant downstream resources.

This chapter includes the following topics:

m APl Tag Filtering Examples

m VRealize Orchestrator Action Example

m Basic Sample Cloud Template

m Associating an External Value with the getTagByKey Action

m Example Service Broker Catalog Request

VMware, Inc. 50

vRealize Automation 8.x Extensibility Migration Guide

m Requesting Catalog Items Programatically

API Tag Filtering Examples

As a prerequisite to dynamically populating tag data through the API, this section provides some
examples of using the vRealize Automation laaS API return tags and filters to return suitable tags

based on known keys.

Get All Tags

Return a list of all available tags, keys and values.

GET /iaas/api/tags

Filter Tags by Key

Return all available tags with a key of location. For example the tag can return the
location:newyork and location:sydney values. The core element in this example is that you can
return all relevant tags based on your defined key.

GET /iaas/api/tags?$filter=key eq 'location’

Filter Networks by Tag Key and Value

Filter networks based on the key and value to then find suitable subsequent tags for further
filtering.

GET /iaas/api/fabric-networks?$filter=tags.item.key eq 'environment' and tags.item.value eq 'dev’

Filter Networks by Cloud Account ID and Environment

Filter networks based on cloud account ID and tag key and value, this can be used when you
have different placement logic between public cloud and on-premises deployments to display
the relevant tags for the target cloud.

GET /iaas/api/fabric-networks?$filter=cloudAccountIds.item eq 'ec4822a755a755906c6b3822b2"' and
tags.item.key eq 'environment’ and tags.item.value eq 'dev'

VRealize Orchestrator Action Example

You can create a generic vVRealize Orchestrator action to be used in custom forms to populate
external values.

In this scenario, you want the ability to return a list of suitable tags for placement based on an
input of tag key.

VMware, Inc.

51

vRealize Automation 8.x Extensibility Migration Guide

Having the tag key as an action makes this action reusable regardless of the tag you must return.

In this case, you authenticate with vRealize Automation by using a REST host stored in a
configuration element. You then make a call to find all suitable tags matching the supplied tag
key.

These tag keys and values are pushed into an array to return the values for our drop-down
menu. This action returns an array of strings containing the filtered tags.

The getTagByKey action below is included in the samples.

var url = "/iaas/api/tags"
var parameters = encodeURI("$filter=key eq " + tagKey);

customHeaders = System.getModule("com.vmware.vra.extensibility").getvRA8CustomHeaders(restHost,
username, password);

var tags =
System.getModule("com.vmware.vra.extensibility.rest").getObjects(restHost,username,password,
customHeaders, url, parameters);

var tagArray = new Array(Q);
for each (var tag in tags) {

tagArray.push(tag.key + + tag.value);

return tagArray;

Basic Sample Cloud Template

You can bind two constraints as inputs in your cloud template.

To demonstrate a simple version of this scenario, you can bind two constraints as inputs in the
cloud template yaml, platform, and environment. These constraints enable your cloud account
and compute placement.

formatVersion: 1
inputs:
platform:
type: string
title: cloud platform
environment:
type: string
title: environment
resources:
Cloud_vSphere_Machine_1:
type: Cloud.Machine
properties:
image: centos
flavor: small
customizationSpec: Linux
constraints:
- tag: '${input.platform}'

VMware, Inc.

52

vRealize Automation 8.x Extensibility Migration Guide

- tag: '${input.environment}'
networks:
- network: '${resource.Cloud_vSphere_Network_1.id}"'
Cloud_vSphere_Network_1:
type: Cloud.Network
properties:
networkType: existing

Associating an External Value with the getTagByKey Action

When you have versioned and released your cloud template, you must then import the content
into Service Broker to allow you to customize the custom forms.

For this use case, you associate the generic getTagByKey action as an external value for your

drop-down menu fields. You supply the input tag key as a constant in the following example as a

"platform™:

VMware, Inc.

53

VRealize Automation 8.x Extensibility Migration Guide

cloud platform ®
Field ID: platform

Appearance Values Constraints
> Default value platform:vsphere
Value
v) External source
options
Value source External source v
Select action gettag)
Action inputs
password Const v
username Const v vroServiceUser
tagKey Const v platform
restHost Const v VRA 8.2: https:/.. (X

The same action is reused for the environment field.

VMware, Inc.

54

VRealize Automation 8.x Extensibility Migration Guide

environment ®

Field ID: environment

Appearance Values Constraints
> Default value Enter value
Value
v External source
options
Value source External source v
Select action getTagByKey)
Action inputs
password Const v~
username Const v vroServiceUser
tagKey Const v environment
restHost Const v VRA 8.2: https://.. (X

Example Service Broker Catalog Request

After requesting your catalog item, you can now see your constraint tags to enable placement
are now dynamically loaded.

The following screenshot shows an example Service Catalog request:

VMware, Inc.

VRealize Automation 8.x Extensibility Migration Guide

New Request

cﬁ %centos Version 2 v

Project * v
Deployment Name *

Description

cloud platform platform:vsphere v

environment * + environment:development
environment:production

SUBMIT CANCEL

Requesting Catalog Items Programatically

While custom forms allow you to customize the requests, there are scenarios requiring you to
use a programatic approach when handling requests. For example, when vRealize Orchestrator is
used for external integrations requiring triggering requests or when automating requests.

In vRealize Automation 7.x, you can manage requests with the vRealize Automation plug-in or
matching REST API:

m From a catalog item get the provisioning request data by using
getProvisioningRequestForCatalogItem() and getProvisioningRequestData(). The provisioning
request data is a type of template similar to the vRealize Automation 8.x cloud template
YAML, but here formatted in JSON.

m Update the provisioning request data.
m Use requestCatalogItemWithProvisioningRequest(catalogItem, provisioningRequest).

This provisioning request data is a complex object including many fields that are not necessarily
matching what the end user would see at request time. For example to change the number of
CPUs it is necessary to change provisioningRequestData.ComponentName.data.cpu = cpuNb. It is also
mandatory to set some fields like the business group ID (the equivalent of a vRealize Automation
8.x project).

In vRealize Automation 8.x, requesting a catalog item programmatically is simpler. The request is
done by using the Service Broker API /catalog/api/items/{id}/request. The body of the request
includes:

m deploymentName

VMware, Inc. 56

vRealize Automation 8.x Extensibility Migration Guide

m projectld
m requestCount
m The request inputs defined in the YAML.

The requests returns an array of deployment IDs (as some cloud templates support more than 1
request).

The following is an example of a request body:

"deploymentName": "TestRequest",
"projectId": "1628469a-3f98-44f1-ba80-e9%ee610686a3",
"bulkRequestCount": 1,
"inputs": {
"platform": "platform:vsphere",
"environment": "environment:production”

The input keys can be obtained with a GET /catalog/api/items/" + catalogItemId call. The sample
action getCatalogItemInputPropertiesAsServiceBrokerDataGridFormat does that and outputs the list
of inputs in a data grid.

The following example includes sample code from the createCatalogItemRequest action:

var url = "/catalog/api/items/" + catalogItemId + "/request";
var requestBody =
{

"deploymentName": deploymentName,

"projectId": projectld,

"bulkRequestCount": bulkRequestCount,

"inputs": inputProperties

var content = JSON.stringify(requestBody);
var operation = "POST";

try {

var contentAsString =
System.getModule("com.vmware.vra.extensibility") .1invokeRestOperation(restHost, operation, url,
content, customHeaders);

} catch (e) {
throw "POST " + url + "Failed" +
"\n Error : " + e;

}
var deployments = JSON.parse(contentAsString);

var deploymentsIds = new Array(Q);

for each (var deployment in deployments) {
deploymentsIds.push(deployment.deploymentId);

VMware, Inc. 57

vRealize Automation 8.x Extensibility Migration Guide

}

return deploymentsIds;

The sample workflow Request Catalog Item (Service Broker Only) lists the catalog itemsin a
drop-down menu. The list of inputs is preconfigured so the value can be edited and when
submitted, run the createCatalogItemRequest action.

VMware, Inc.

58

VRealize Automation 8.x Extensibility Migration Guide

@u Reqguest Catalog Item (Service Broker Only)

Project * Development

Deployment Mame *

Description
Y

vRA Host * 6b6ad657-851a-46a7-913b-0738febe .. (X)
Username * fritz
Password * .
Deployment name Test request
Mumber of requests 1 .
Catalog item * ChristopheTest v
inputProperties

[+]

[key v value

(] inputt valuel

SUBMIT CANCEL

VMware, Inc.

1-10f1

59

Tags and Custom Properties

You can use tags and custom properties to further configure your vRealize Automation
components and deployments.

In vRealize Automation 7.x, custom properties are responsible for:

m Providing information about the deployment.

= Modifying deployment configuration elements, such as VM hardware and OS configurations.
m Modifying configuration elements for vRealize Automation integrations.

m Attaching information to deployments for use in reporting and for additional payload
properties to use in extensibility.

= Modifying the deployment placement.

Custom properties function as both custom key and value pairs, and also as reserved properties.
For more information on reserved properties, see the Custom Properties Reference guide.

These custom properties can be set at different levels including endpoint, reservation, compute
resource, business group, cloud template, and property group.

They can also be set at request time in the input forms, changed with Event Broker using the
virtualMachineAddOrUpdateCustomProperties workflow output or using the
addUpdatePropertyFromVirtualMachineEntity parameter.

vRealize Automation 8.x offers similar functionality with some changes:

m The properties are now part of the Cloud Assembly cloud template designer schema. They
can also be set at deployment time through input form inputs.

m The names and meanings have changed and are documented in the vRealize Automation
Resource Type Schema. The properties that impact the deployment on change are
documented as recreateOnUpdate: true.

m Some extensibility features can also use predefined custom properties, such as the AD
integration.

VMware, Inc. 60

https://code.vmware.com/apis/894/vrealize-automation-resource-type-schema
https://code.vmware.com/apis/894/vrealize-automation-resource-type-schema

VRealize Automation 8.x Extensibility Migration Guide

As an example of this custom properties functionality, you can use the scenario for setting the
folder name in vCenter that machine will deploy to. In vRealize Automation 7.x, this can be done
with the VMware.VirtualCenter.Folder property. This property specifies the name of the inventory
folder in the data center in which to put the virtual machine. The default folder is VRM, which is
also the vSphere folder in which vRealize Automation places provisioned machines if the
property is not used. This value can be a path with multiple folders, for example production or
email servers. A proxy agent creates the specified folder in vSphere if the folder does not exist.
Folder names are case-sensitive. This property is available for virtual provisioning

The equivalent property in vRealize Automation 8.x is folderName.

foldername string
minLength: 1
recreateontpdate: trus

title: VM folder for provisioning

The path to the folder where the virtual machine is provisioned, relative to the datacenter that the resource pool is im.

In vRealize Automation 8.x, Event Broker can modify properties with the customProperties
workflow output on many events and dedicated outputs as described in the Event Broker
section.

In vRealize Automation 7.x, tags have a minor function. There are custom use cases where a
vRealize Orchestrator workflow or a PowerShell cmdlet can update a vCenter VM tag that can be
used during or after the deployment.

In vRealize Automation 8.x, tags have a larger function.

m Capability tags define the placement logic during provisioning. They can be set on compute
resources, cloud zones, images and image maps, and networks and network profiles.

m Constraint tags are set on cloud templates and projects so they can match the resources set
with capability tags.

m Standard tags are used to filter, analyze, monitor, and group deployed resources.

Tags are included in different endpoints such as vSphere, Amazon Web Services (AWS), and
Azure, or created in vRealize Automation. Tags can be set at deployment time by Event Broker
by using the tags workflow output parameter. vRealize Automation 8.x also allows you to update
tags as day 2 operations on projects, deployment resources, and machines.

The following example can be used to update tags provided as a properties input on a
deployment by using the deployment resource action EditTags. The sample is included in the
setDeploymentResourceTagsFromProperties VRealize Orchestrator action that can be run as part of
the Edit deployment tags workflow.

var operation = "POST";
var url = "/deployment/api/deployments/" + deploymentId + "/requests";

var object = {
"actionId": "Deployment.EditTags",
"targetId": deploymentId,
"inputs": {}

VMware, Inc. 61

vRealize Automation 8.x Extensibility Migration Guide

object.inputs[resourceName] = new Array(Q);

for

var

var

each (var key in tags.keys) {
var tag = {"key": key,"value": tags.get(key)};
object.inputs[resourceName].push(tag);

content = JSON.stringify(object);

customHeaders = System.getModule("com.vmware.vra.extensibility").getvRA8CustomHeaders(restHost,

username, password);

try

{

var contentAsString =

System.getModule("com.vmware.vra.extensibility") .1invokeRestOperation(restHost, operation, url,

content, customHeaders);

}

The following example can be used to update tags on a project by using the PATCH operation.
The sample is included the in the setProjectTagsFromProperties VRealize Orchestrator action that

var object = JSON.parse(contentAsString);
catch (e) {
throw("Unable to POST object url : " + url + "\n" + e + "\nWith Content : " + content);

can be run as part of the Edit project tags workflow.

var
var

var

for

var

var

operation = "PATCH";
url = "/iaas/api/projects/" + projectld + "/resource-metadata";

object = {"tags":[1};
each (var key in tags.keys) {

var tag = {"key": key,"value": tags.get(key)};

object.tags.push(tag);

content = JSON.stringify(object);

customHeaders = System.getModule("com.vmware.vra.extensibility").getvRA8CustomHeaders(restHost,

username, password);

try

{

var contentAsString =

System.getModule("com.vmware.vra.extensibility") .1invokeRestOperation(restHost, operation, url,

content, customHeaders);

var object = JSON.parse(contentAsString);
} catch (e) {
throw("Unable to Patch object url : " + url + "\n" + e + "\nWith Content : " + content);

In vRealize Automation 8.2 there is no public API to programmatically change the custom
properties at the project level but there is an API to change custom properties at the machine

level.

VMware, Inc.

vRealize Automation 8.x Extensibility Migration Guide

The following example can be used to update custom properties on a machine by using the
PATCH operation. The sample is included in the setMachineCustomPropertiesFromProperties
vRealize Orchestrator action that can be run as part of the Edit machine custom properties
workflow.

var customHeaders = System.getModule("com.vmware.vra.extensibility").getvRA8CustomHeaders(restHost,
username, password);

var url = "/iaas/api/machines/" + machineld;
var object = new Object(Q);

var customPropertiesObject = new Object();
for each (var key in customProperties.keys) {
customPropertiesObject[key] = customProperties.get(key);

object.customProperties = customPropertiesObject;
var content = JSON.stringify(object);

var operation = "PATCH";

try {
var contentAsString =
System.getModule("com.vmware.vra.extensibility") .1invokeRestOperation(restHost, operation, url,
content, customHeaders);
var object = JSON.parse(contentAsString);
} catch (e) {
throw("Unable to Patch object url : ™ + url + "\n" + e + "\nWith Content : " + content);

For more custom property examples, see Update the Custom Properties of a Machine.

VMware, Inc.

https://code.vmware.com/docs/12597/vrealize-automation-8-2-api-programming-guide/GUID-F6338150-20FB-4B26-AC08-FDFE55074304.html

Using VRealize Automation Xaa$S
Services

vRealize Automation includes a XaaS capability that can be used to further automate your
environment.

With Event Broker and other automation and integration scenarios, the vRealize Orchestrator
workflows run in the back-end. There are also use cases that require the end users to trigger the
workflows from the vRealize Automation user interface. This capability is called Anything as a
Service (XaaS).

This chapter includes the following topics:
m Differences between vRealize Orchestrator Forms and Service Broker Forms
m Workflow Sample

m Using Custom Resources

Differences between vRealize Orchestrator Forms and
Service Broker Forms

There are key differences between using vRealize Orchestrator and vRealize Automation Service
Broker forms.

Starting with vRealize Automation 8.2, Service Broker is capable of displaying input forms
designed in vRealize Orchestrator with the custom forms display engine. However, there are
some differences in the forms display engines.

Amongst the differences, the following features supported in vRealize Orchestrator are not yet
supported in Service Broker:

m The inputs presentations developed with the vRealize Orchestrator Legacy Client used in
vRealize Orchestrator 7.6 and earlier, are not compatible. vRealize Orchestrator uses a built-in
legacy input presentation conversion that is not available from Service Broker yet.

VMware, Inc. 64

VRealize Automation 8.x Extensibility Migration Guide

m The inputs presentation in vRealize Orchestrator has access to all the workflow elements
within the workflow. The custom forms have access to the elements exposed to vRealize
Automation Service Broker through the VRO-Gateway service, which is a subset of what is
available on vRealize Orchestrator.

m Custom forms can bind workflow inputs to action parameters used to set values in other
inputs.

m Custom forms cannot bind workflows variables to action parameters used to set values in
other inputs.

It is possible to work around vRealize Automation not having access to workflow variables by one
of the following options :

m Using a custom action returning the variable content.
m Binding to an input parameter set to not visible instead of a variable.
m Enabling custom forms and using constants.

The widgets available in vRealize Orchestrator and in vRealize Automation vary for certain types.
The following table describe what is supported.

vRealize Automation vRealize Orchestrator

Possible vRealize Possible vRealize

Automation form display

Input Data Type Action return type for Action return type

value options Orchestrator form for Value Options

types display types
String m Text, TextFleld, Text m Array of String m Text, TextFleld, m Array of String
Area Text Area

Array of String

Integer

Array of Integer

Number

Array/Number

Boolean

Date

VMware, Inc.

m Dropdown, Radio
Group

Array Input (valid for

VvRealize Automation 8.2),

Dual List, Multi Select
Integer

Array Input (valid for

VvRealize Automation 8.2),
Datagrid (valid for vRealize

Automation 8.1)
Decimal

Array Input (valid for

VvRealize Automation 8.2),
Datagrid (valid for vRealize

Automation 8.1)
Checkbox

Date Time

m Properties

m Array of Properties

(value, label)

Array of String

Array of Number

Array of Number

Array of Number

Array of Number

N/A

Array of Date

m Dropdown, Radio
Group

Datagrid, Multi Value
Picker

N/A

N/A

Decimal

Datagrid

Checkbox

Date Time

Array of String

N/A

N/A

Array of Number

Array of Number

N/A

Array of Date

65

VRealize Automation 8.x Extensibility Migration Guide

Array of Date Array Input (valid for Array of Date Datagrid Array of Date

VvRealize Automation 8.2),

Datagrid (valid for vRealize

Automation 8.1)
Composite/ Datagrid, Array of Composite, Datagrid Array of
Complex/ Properties, Array of Composite,
Properties Properties Properties
Array of Datagrid, Multi Value Array of Composite Datagrid, Multi Value Array of
Composite Picker Picker Composite

Reference /
vRealize
Orchestrator SDK
Object type

Array of
Reference

Secure String

File

Value Picker

N/A

Password

N/A

Array of SDK Object
(valid for vRealize
Automation 8.2)

N/A

N/A

N/A

Value Picker

Datagrid

Passward

File Upload

Array of SDK
Object

Array of SDK
Object

N/A

N/A

For use cases where the widget specified in vRealize Orchestrator is not available from Service

Broker, a compatible widget is used.

Because the data being passed to and from the widget might expect different types, formats,
and values in the case they are unset, the best practice to develop workflows targeting Service

Broker is to:

1

8
9

Develop the vRealize Orchestrator workflow. This can include both the initial development of
the workflow or changes of inputs.

Version the workflow manually.

Wait until the vRealize Orchestrator integration data collection happens. This step, along with
the previous step, ensure that the VRO-Gateway service used by vRealize Automation has the
latest version of the workflow.

Import content into Service Broker. This step generates a new default custom form.
Develop workflow inputs forms with the custom forms editor.

If these forms call actions, develop or run these from the vRealize Orchestrator workflow
editor.

Test the inputs presentation in Service Broker.
Repeat from step 5 as many times as needed.

Repeat from step 1, in case workflows inputs need to be changed.

Either distribute and maintain the custom forms or alternatively, design vRealize Orchestrator
inputs by using the same options or actions as in the custom forms (the above step 1), and then
repeat the steps 2 to 7 to valid that the process works.

VMware, Inc.

66

VRealize Automation 8.x Extensibility Migration Guide

Using this last option means that:

m Running the workflow from vRealize Orchestrator can lead to the input presentation not
working as expected when started in vRealize Orchestrator.

m For some cases, you must modify the return type of the actions used for default value or
value options so these values can be set from the vRealize Orchestrator workflow editor and,
when the workflow is saved, revert the action return types.

Designing the form in the workflow has the following advantages:

m Form is packaged and delivered as part of the workflow included in a package.

m Form can be tested in vRealize Orchestrator as long as the compatible widgets are applied.

m The form can optionally be versioned and synchronized to a Git repository with the workflow.
Designing the custom forms separately has the following advantages:

m Being able to customize the form without changing the workflow.

m Being able to import and export the form as a file and reusing it for different workflows.

For example, a common use case is to have a string based drop-down menu. If the input forms
are designed in the vRealize Orchestrator workflow editor, the only available actions for value
options are the values returning an array of string type. If the input forms are designed in the
custom forms designer, the other available actions for value options are the values returning
Properties or an array of Properties types.

Returning a Properties type is used so you can display a list of values in the drop-down menu.
After being select by the user, these values pass an ID to the parameter (to the workflow and the
other input fields that would bind to this parameter). This is very practical to list objects when
there is no dedicated plug-in for them as this avoids you having to select object names and
having to find object IDs by name.

Returning an array of Properties types has the same goal as returning Properties but does give
control on the ordering of the element. It is done by setting for each property in the array the
label and value keys. For example, it is possible to sort ascending or descending properties by
label or by keys within the action.

All the workflows included in the "drop down" folder of the sample package are using the drop-
down option. The workflows indicating "Service Broker Only", use the Properties or Array of
Properties type that is not yet supported when running the presentation in vRealize Orchestrator.
The other workflows use an array of string types making the drop-down option compatible
whether run from vRealize Orchestrator or Service Broker.

For example, in the case the input type is Properties:

m [f the input forms are designed in the vRealize Orchestrator workflow editor the only available
actions for value options is Properties.

VMware, Inc. 67

VRealize Automation 8.x Extensibility Migration Guide

m [f the input forms are designed in the custom forms designer, the other available actions for
value options are the values returning an array of Properties types. It is done by setting for
each property in the array the keys and value keys.

Workflow Sample

The following workflow sample demonstrates how you can edit the custom properties of a virtual
machine.

This workflow sample exists in two versions. The first version is designed to be run in vRealize
Orchestrator while the second version is designed to run in vRealize Automation without
requiring the implementation of custom forms.

In the version designed to best run in vRealize Orchestrator, the vRA Host, Username and Password

inputs are using a default value bound to a workflow variable that is in turn bound to a
configuration element.

Issues @ @ |3 B Properties

General ADD TAB

.\«'RA Host VRA Host @

Fiadd ID: restiost

Appearance WValues Constraints
Username —

w Default value Bind field
Password

WValue source Bind fiald

Field defaultRestHost

To use similar functionality from vRealize Automation Service Broker, the default value is set by
the actions returning the content of the variables of the configuration element. A simpler option
is to use custom form constants but requires you to enable custom forms and setting the
constants after importing the workflow.

lssues @ @ |3 b Properties

General ADD TaB
2 vRA Host
|vRA Host @

Field ID: restHost
T F Appearance Values Constraints
Username

o Default value External source
Password

Value source External source

Sabact action COM VITWare vra. fgetDetaultRestHost ()
machineld

In the vRealize Orchestrator version of the workflow, the machineName input is set with
getMachinesNames.

VMware, Inc. 68

VRealize Automation 8.x Extensibility Migration Guide

Machine &

Field ID: machineMName

Appearance Values

Constraints

> Default value

+ Walue options

Walue source
Select action
Action inputs
customHeaders
password
username

restHost

The customProperties datagrid designed for vRealize Orchestrator use an action returning a

Enter value ~

External source

External source ~

com.vmware.vra.extensibility. rest.iaas/getMachinesNames @

Field ~ customHeaders ~
Field ~ Password ~
Field ~ Username ~
Field ~ vRA Host ~

Properties type which get the machine by name.

customProperties @

Field I1D: customProperties

Appearance Values

5 Columns

+ Default value

Value source
Select action
Action inputs
customHeaders
password
username
machineName

restHost

The customProperties data grid designed for vRealize Automation requires returning an array of

Constraints

Field

Field
Field
Field
Field

External source

External source

com.vmware.vra.extensibility rest.iaas/getMachineCustomPropertiesAsPropertiesBy NameGS @

customHeaders
. Password
Username
Machine

vRA Host

properties instead of a properties object, as is the case with vRealize Orchestrator, but it can be
bound directly to the machineid input.

customProperties @

Field |D: customProperties

Appearance Values Constraints

» Columns

~ Default value

Walue source
Select action
Action inputs
machineid
customHeaders
password
usermname

restHost

VMware, Inc.

Field
Field
Field
Field

Field

External source

External source

com.vmware.vra.extensibility restiaas/getMachineCustomPropertiesAsServiceBrokerDataGrid .. ()

machineid
customHeaders
Password
Userﬁalﬁe
vRA Host

69

VRealize Automation 8.x Extensibility Migration Guide

The difference between these workflow versions is that the version designed in Service Broker
does not need the Get machine ID by name property as it is capable of displaying the machine
name in the drop-down menu and passing the machine ID to the workflow input parameter.

e o %0

- Get machine ID by - . . setMachineCustomPropertiesFromProperties -
name

Using Custom Resources

One of the primary features of using XaaS in vRealize Automation is using custom resources.

In vRealize Automation 7.x, it is possible to create an XaaS service blueprint. The service blueprint
is essentially the way to define and use a vRealize Orchestrator workflow from vRealize
Automation. The service blueprint can be published in the catalog service and entitled, and it can
be used in the blueprint design canvas. In both cases, it can provision a custom resource as an
option. This resource can:

m Appear in the Items tab (for versions earlier than vRealize Automation 7.6) or Deployments
tab (for vRealize Automation 7.6) when request from the catalog.

m Appear as one of the components of the deployment when requested as part of a composite
blueprint.

Provisioning a custom resource allows you to track the custom resource and its realtime
properties from the user interface. It also enables you to perform day 2 operations known as
resource actions.

In vRealize Automation 7.x resource actions can run a workflow in context of a custom resource
for:

m Delete operations (Using a disposal option)

m Update operations (No option)

m Copy operations (Using a provisioning option)

m Move or stage operations (Using a provisioning & disposal option)

In vRealize Automation 8.x, custom resources offer similar capabilities in comparison to vRealize
Automation 7.x. A custom resource in vRealize Automation 8.x has the following mondatory
requirements:

® You must have a provision workflow that must output an vRealize Orchestrator plug-in type
that maches the type defined in the custom resource

m You must have a decommission workflow.

VMware, Inc. 70

VRealize Automation 8.x Extensibility Migration Guide

vRealize Automation 8.x custom resources allow you to use a specific vVRealize Orchestrator type
once per project or having it shared with all projects once. It is not possible, for example, to use
different provisioning workflows outputting the same custom resource type.

vRealize Automation 8.x resource actions have the following differences with vRealize
Automation 7.x:

m Provisioning and decommissioning options.

m No capability to bind custom resources to vRealize Orchestrator action parameters in the
request form.

A core difference is that the availability of the resource action in vRealize Automation 8.x can be
defined programmatically based on the resource properties. For example some actions might not
be available if the state of the element is "OFF". The equivalent feature in vRealize Automation 7.x
has less options because it is user interface based.

Resource Mappings

A resource mapping defines how a native vRealize Automation resource is converted to a
vRealize Orchestrator type.

In vRealize Automation 8.x, there are more resource types being supported than in comparison
to vRealize Automation 7.x. Each of these resources has a schema defining the resource
properties. You can define a vRealize Orchestrator action that binds its inputs to these properties
and return the equivalent vRealize Orchestrator object. For example, the vSphere components
have a vCenterUuid and uuid property that can be used to return a vRealize Orchestrator type,
such as VC:VirtualMachine. Another good example of this functionality is the built-in
findVcVMByVcAndVMUuid action introduced in vRealize Automation 8.x.

When the resource mapping is created, it is possible to add new day 2 operations on these
resources that are workflows that use the matching vRealize Orchestrator type as inputs.

The main difference in comparison to vRealize Automation 7.x, is that it uses a workflow for
resource mapping. It might be necessary to migrate the workflows to actions to reuse their
functionality in vRealize Automation 8.x.

Another difference is that vRealize Automation 8.x is that the resource mapping can be defined
on a resource action basis. For each input of the resource action, it is possible to either expose
the input at request time, map it to one of the schema resource properties, or associate a
mapping action that uses one or more schema resource properties and returns the same type as
the workflow input it binds to. This is useful to pass information from the schema directly without
having to change the workflow or create a wrapper workflow that must be used to add the
scripting logic to these required to query the vRealize Automation resource from vRealize
Orchestrator.

Custom Cloud Template Component

The application of custom components is a key element of cloud template development.

VMware, Inc. 71

VRealize Automation 8.x Extensibility Migration Guide

An important limitation of the XaaS components used in the cloud template designer is that, it
being based on custom resources, it must provision a custom component. This is different from
vRealize Automation 7.x where the service can start any workflow, even if it was not outputting a
custom resource.

If your environment includes vRealize Automation 7.x blueprints components that are, for
example, implementing some configuration changes, it will be necessary to use other means to
trigger this workflow. The alternative is to use Event Broker to do so.

Another area that is very different in vRealize Automation 8.x is the way that these components
inputs and outputs can be bound to other components on the schema. In vRealize Automation
7.X, these bindings only supported simple types and were controlled through the user interface
without any program based approach. In vRealize Automation 8.x, the Create workflow inputs
define the properties in the YAML schema and these can be scripted. These inputs can be
mapped to the cloud template input properties even if these are of complex types. With this you
can, for example, use an input of a given resource type that can be searched.

VMware, Inc. 72

	vRealize Automation 8.x Extensibility Migration Guide
	Contents
	vRealize Automation 8.x Extensibility Migration Guide
	vRealize Automation 8.x Extensibility Migration Guide Sample Package
	Accessing vRealize Automation Objects and Properties
	Persist and Manage vRealize Automation Orchestrated Hosts with Their Credentials
	Pass Credentials from a vRealize Automation User to the vRealize Automation Plug-in for vRealize Orchestrator
	vRealize Automation 8.x Finder Objects
	vRealize Automation Scripting Objects and REST Queries
	Actions and Workflows Supporting Common Operations

	Customizing Machine Provisioning
	Customize Machine Properties or Deployments with Extensibility Topics
	Customize Machine Properties or Deployments using the vRealize Automation API

	Day 2 Operations on IaaS Entities
	Custom Form API Call Examples

	Using Dynamic Types with Custom Resources in vRealize Automation Cloud Assembly
	Creating the Dynamic Types Configuration
	Dynamic Types Object and Custom Resource Requirements
	Create the Dynamic Types Custom Resource

	Lifecycle Extensibility
	Migrating Subscriptions from vRealize Automation 7.x to vRealize Automation 8.x
	Creating a Subscription
	Create a Wrapper Workflow
	Testing the Subscription

	Onboarding a Customer Organization
	Onboarding a Project
	Sychronizing the vIDM Directory
	Creating a vRealize Automation Project
	Associating a Tag with the Project
	Add Cloud Zones to the Project
	Assign Cloud Assembly and Service Broker User Roles
	Assign Catalog Items to a Project
	vRealize Orchestrator Implementation for Project Onboarding
	Adding Resource Provisioning to a Project

	Requesting Catalog Items
	API Tag Filtering Examples
	vRealize Orchestrator Action Example
	Basic Sample Cloud Template
	Associating an External Value with the getTagByKey Action
	Example Service Broker Catalog Request
	Requesting Catalog Items Programatically

	Tags and Custom Properties
	Using vRealize Automation XaaS Services
	Differences between vRealize Orchestrator Forms and Service Broker Forms
	Workflow Sample
	Using Custom Resources
	Resource Mappings
	Custom Cloud Template Component

