È possibile distribuire un'istanza di Deep Learning VM con un carico di lavoro NVIDIA RAG utilizzando un database PostgreSQL pgvector gestito da VMware Data Services Manager.
Prerequisiti
- Verificare che VMware Private AI Foundation with NVIDIA sia configurato. Vedere Preparazione di VMware Cloud Foundation per la distribuzione del carico di lavoro di Private AI.
- Distribuzione di un database vettore in VMware Private AI Foundation with NVIDIA.
Nota: In base alle linee guida dell'azienda, è possibile distribuire una macchina virtuale di deep learning con un nuovo database vettore in un'unica richiesta di provisioning nel catalogo self-service di VMware Aria Automation.
Procedura
- Se in qualità di data scientist si distribuisce Deep Learning VM utilizzando un elemento catalogo in VMware Aria Automation, specificare i dettagli del database PostgreSQL pgvector dopo aver distribuito la macchina virtuale.
- Se in qualità di tecnico DevOps si distribuisce Deep Learning VM per un data scientist direttamente nel cluster vSphere o utilizzando il comando kubectl, creare uno script cloud-init e distribuire Deep Learning VM.
- Creare uno script cloud-init per NVIDIA RAG e il database PostgreSQL pgvector creato.
È possibile modificare la versione iniziale dello script cloud-init per NVIDIA RAG. Ad esempio, per NVIDIA RAG 24.08 e un database PostgreSQL pgvector con dettagli di connessione
postgres://pgvector_db_admin:encoded_pgvector_db_admin_password@pgvector_db_ip_address:5432/pgvector_db_name
.#cloud-config write_files: - path: /opt/dlvm/dl_app.sh permissions: '0755' content: | #!/bin/bash set -eu source /opt/dlvm/utils.sh trap 'error_exit "Unexpected error occurs at dl workload"' ERR set_proxy "http" "https" sudo mkdir -p /opt/data/ sudo chown vmware:vmware /opt/data sudo chmod -R 775 /opt/data cd /opt/data/ cat <<EOF > /opt/data/config.json { "_comment_1": "This provides default support for RAG v24.08: llama3-8b-instruct model", "_comment_2": "Update llm_ms_gpu_id: specifies the GPU device ID to make available to the inference server when using multiple GPU", "_comment_3": "Update embedding_ms_gpu_id: specifies the GPU ID used for embedding model processing when using multiple GPU", "rag": { "org_name": "nvidia", "org_team_name": "aiworkflows", "rag_name": "ai-chatbot-docker-workflow", "rag_version": "24.08", "rag_app": "rag-app-multiturn-chatbot", "nim_model_profile": "auto", "llm_ms_gpu_id": "0", "embedding_ms_gpu_id": "0", "model_directory": "model-cache", "ngc_cli_version": "3.41.2" } } EOF CONFIG_JSON=$(cat "/opt/data/config.json") required_vars=("ORG_NAME" "ORG_TEAM_NAME" "RAG_NAME" "RAG_VERSION" "RAG_APP" "NIM_MODEL_PROFILE" "LLM_MS_GPU_ID" "EMBEDDING_MS_GPU_ID" "MODEL_DIRECTORY" "NGC_CLI_VERSION") # Extract rag values from /opt/data/config.json for index in "${!required_vars[@]}"; do key="${required_vars[$index]}" jq_query=".rag.${key,,} | select (.!=null)" value=$(echo "${CONFIG_JSON}" | jq -r "${jq_query}") if [[ -z "${value}" ]]; then error_exit "${key} is required but not set." else eval ${key}=\""${value}"\" fi done # Read parameters from config-json to connect DSM PGVector on RAG CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') CONFIG_JSON_PGVECTOR=$(echo "${CONFIG_JSON_BASE64}" | base64 -d) PGVECTOR_VALUE=$(echo ${CONFIG_JSON_PGVECTOR} | jq -r '.rag.pgvector') if [[ -n "${PGVECTOR_VALUE}" && "${PGVECTOR_VALUE}" != "null" ]]; then echo "Info: extract DSM PGVector parameters from config-json in XML" POSTGRES_USER=$(echo ${PGVECTOR_VALUE} | awk -F[:@/] '{print $4}') POSTGRES_PASSWORD=$(echo ${PGVECTOR_VALUE} | awk -F[:@/] '{print $5}') POSTGRES_HOST_IP=$(echo ${PGVECTOR_VALUE} | awk -F[:@/] '{print $6}') POSTGRES_PORT_NUMBER=$(echo ${PGVECTOR_VALUE} | awk -F[:@/] '{print $7}') POSTGRES_DB=$(echo ${PGVECTOR_VALUE} | awk -F[:@/] '{print $8}') for var in POSTGRES_USER POSTGRES_PASSWORD POSTGRES_HOST_IP POSTGRES_PORT_NUMBER POSTGRES_DB; do if [ -z "${!var}" ]; then error_exit "${var} is not set." fi done fi gpu_info=$(nvidia-smi -L) echo "Info: the detected GPU info, $gpu_info" if [[ ${NIM_MODEL_PROFILE} == "auto" ]]; then case "${gpu_info}" in *A100*) NIM_MODEL_PROFILE="751382df4272eafc83f541f364d61b35aed9cce8c7b0c869269cea5a366cd08c" echo "Info: GPU type A100 detected. Setting tensorrt_llm-A100-fp16-tp1-throughput as the default NIM model profile." ;; *H100*) NIM_MODEL_PROFILE="cb52cbc73a6a71392094380f920a3548f27c5fcc9dab02a98dc1bcb3be9cf8d1" echo "Info: GPU type H100 detected. Setting tensorrt_llm-H100-fp16-tp1-throughput as the default NIM model profile." ;; *L40S*) NIM_MODEL_PROFILE="d8dd8af82e0035d7ca50b994d85a3740dbd84ddb4ed330e30c509e041ba79f80" echo "Info: GPU type L40S detected. Setting tensorrt_llm-L40S-fp16-tp1-throughput as the default NIM model profile." ;; *) NIM_MODEL_PROFILE="8835c31752fbc67ef658b20a9f78e056914fdef0660206d82f252d62fd96064d" echo "Info: No supported GPU type detected (A100, H100, L40S). Setting vllm as the default NIM model profile." ;; esac else echo "Info: using the NIM model profile provided by the user, $NIM_MODEL_PROFILE" fi RAG_URI="${ORG_NAME}/${ORG_TEAM_NAME}/${RAG_NAME}:${RAG_VERSION}" RAG_FOLDER="${RAG_NAME}_v${RAG_VERSION}" NGC_CLI_URL="https://api.ngc.nvidia.com/v2/resources/nvidia/ngc-apps/ngc_cli/versions/${NGC_CLI_VERSION}/files/ngccli_linux.zip" if [ ! -f .initialize ]; then # clean up rm -rf compose.env ngc* ${RAG_NAME}* ${MODEL_DIRECTORY}* .initialize # install ngc-cli wget --content-disposition ${NGC_CLI_URL} -O ngccli_linux.zip && unzip -q ngccli_linux.zip export PATH=`pwd`/ngc-cli:${PATH} APIKEY="" DEFAULT_REG_URI="nvcr.io" REGISTRY_URI_PATH=$(grep registry-uri /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') if [[ -z "${REGISTRY_URI_PATH}" ]]; then REGISTRY_URI_PATH=${DEFAULT_REG_URI} echo "Info: registry uri was empty. Using default: ${REGISTRY_URI_PATH}" fi if [[ "$(grep registry-uri /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p')" == *"${DEFAULT_REG_URI}"* ]]; then APIKEY=$(grep registry-passwd /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') fi if [ -z "${APIKEY}" ]; then error_exit "No APIKEY found" fi # config ngc-cli mkdir -p ~/.ngc cat << EOF > ~/.ngc/config [CURRENT] apikey = ${APIKEY} format_type = ascii org = ${ORG_NAME} team = ${ORG_TEAM_NAME} ace = no-ace EOF # Extract registry URI if path contains '/' if [[ ${REGISTRY_URI_PATH} == *"/"* ]]; then REGISTRY_URI=$(echo "${REGISTRY_URI_PATH}" | cut -d'/' -f1) else REGISTRY_URI=${REGISTRY_URI_PATH} fi REGISTRY_USER=$(grep registry-user /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') # Docker login if credentials are provided if [[ -n "${REGISTRY_USER}" && -n "${APIKEY}" ]]; then docker login -u ${REGISTRY_USER} -p ${APIKEY} ${REGISTRY_URI} else echo "Warning: the ${REGISTRY_URI} registry's username and password are invalid, Skipping Docker login." fi # DockerHub login for general components DOCKERHUB_URI=$(grep registry-2-uri /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') DOCKERHUB_USERNAME=$(grep registry-2-user /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') DOCKERHUB_PASSWORD=$(grep registry-2-passwd /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') DOCKERHUB_URI=${DOCKERHUB_URI:-docker.io} if [[ -n "${DOCKERHUB_USERNAME}" && -n "${DOCKERHUB_PASSWORD}" ]]; then docker login -u ${DOCKERHUB_USERNAME} -p ${DOCKERHUB_PASSWORD} ${DOCKERHUB_URI} else echo "Warning: ${DOCKERHUB_URI} not logged in" fi # Download RAG files ngc registry resource download-version ${RAG_URI} mkdir -p /opt/data/${MODEL_DIRECTORY} # Update the docker-compose YAML files to correct the issue with GPU free/non-free status reporting /usr/bin/python3 -c "import yaml, json, sys; print(json.dumps(yaml.safe_load(sys.stdin.read())))" < "${RAG_FOLDER}/docker-compose-nim-ms.yaml"> docker-compose-nim-ms.json jq --arg profile "${NIM_MODEL_PROFILE}" \ '.services."nemollm-inference".environment.NIM_MANIFEST_ALLOW_UNSAFE = "1" | .services."nemollm-inference".environment.NIM_MODEL_PROFILE = $profile | .services."nemollm-inference".deploy.resources.reservations.devices[0].device_ids = ["${LLM_MS_GPU_ID:-0}"] | del(.services."nemollm-inference".deploy.resources.reservations.devices[0].count)' docker-compose-nim-ms.json > temp.json && mv temp.json docker-compose-nim-ms.json /usr/bin/python3 -c "import yaml, json, sys; print(yaml.safe_dump(json.load(sys.stdin), default_flow_style=False, sort_keys=False))" < docker-compose-nim-ms.json > "${RAG_FOLDER}/docker-compose-nim-ms.yaml" rm -rf docker-compose-nim-ms.json # Update docker-compose YAML files to config PGVector as the default databse /usr/bin/python3 -c "import yaml, json, sys; print(json.dumps(yaml.safe_load(sys.stdin.read())))" < "${RAG_FOLDER}/${RAG_APP}/docker-compose.yaml"> rag-app-multiturn-chatbot.json jq '.services."chain-server".environment.APP_VECTORSTORE_NAME = "pgvector" | .services."chain-server".environment.APP_VECTORSTORE_URL = "${POSTGRES_HOST_IP:-pgvector}:${POSTGRES_PORT_NUMBER:-5432}" | .services."chain-server".environment.POSTGRES_PASSWORD = "${POSTGRES_PASSWORD:-password}" | .services."chain-server".environment.POSTGRES_USER = "${POSTGRES_USER:-postgres}" | .services."chain-server".environment.POSTGRES_DB = "${POSTGRES_DB:-api}"' rag-app-multiturn-chatbot.json > temp.json && mv temp.json rag-app-multiturn-chatbot.json /usr/bin/python3 -c "import yaml, json, sys; print(yaml.safe_dump(json.load(sys.stdin), default_flow_style=False, sort_keys=False))" < rag-app-multiturn-chatbot.json > "${RAG_FOLDER}/${RAG_APP}/docker-compose.yaml" rm -rf rag-app-multiturn-chatbot.json # config compose.env cat << EOF > compose.env export MODEL_DIRECTORY="/opt/data/${MODEL_DIRECTORY}" export NGC_API_KEY=${APIKEY} export USERID=$(id -u) export LLM_MS_GPU_ID=${LLM_MS_GPU_ID} export EMBEDDING_MS_GPU_ID=${EMBEDDING_MS_GPU_ID} EOF if [[ -n "${PGVECTOR_VALUE}" && "${PGVECTOR_VALUE}" != "null" ]]; then cat << EOF >> compose.env export POSTGRES_HOST_IP="${POSTGRES_HOST_IP}" export POSTGRES_PORT_NUMBER="${POSTGRES_PORT_NUMBER}" export POSTGRES_PASSWORD="${POSTGRES_PASSWORD}" export POSTGRES_USER="${POSTGRES_USER}" export POSTGRES_DB="${POSTGRES_DB}" EOF fi touch .initialize deploy_dcgm_exporter fi # start NGC RAG echo "Info: running the RAG application" source compose.env if [ -z "${PGVECTOR_VALUE}" ] || [ "${PGVECTOR_VALUE}" = "null" ]; then echo "Info: running the pgvector container as the Vector Database" docker compose -f ${RAG_FOLDER}/${RAG_APP}/docker-compose.yaml --profile local-nim --profile pgvector up -d else echo "Info: using the provided DSM PGVector as the Vector Database" docker compose -f ${RAG_FOLDER}/${RAG_APP}/docker-compose.yaml --profile local-nim up -d fi - path: /opt/dlvm/utils.sh permissions: '0755' content: | #!/bin/bash error_exit() { echo "Error: $1" >&2 vmtoolsd --cmd "info-set guestinfo.vmservice.bootstrap.condition false, DLWorkloadFailure, $1" exit 1 } check_protocol() { local proxy_url=$1 shift local supported_protocols=("$@") if [[ -n "${proxy_url}" ]]; then local protocol=$(echo "${proxy_url}" | awk -F '://' '{if (NF > 1) print $1; else print ""}') if [ -z "$protocol" ]; then echo "No specific protocol provided. Skipping protocol check." return 0 fi local protocol_included=false for var in "${supported_protocols[@]}"; do if [[ "${protocol}" == "${var}" ]]; then protocol_included=true break fi done if [[ "${protocol_included}" == false ]]; then error_exit "Unsupported protocol: ${protocol}. Supported protocols are: ${supported_protocols[*]}" fi fi } # $@: list of supported protocols set_proxy() { local supported_protocols=("$@") CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') CONFIG_JSON=$(echo ${CONFIG_JSON_BASE64} | base64 --decode) HTTP_PROXY_URL=$(echo "${CONFIG_JSON}" | jq -r '.http_proxy // empty') HTTPS_PROXY_URL=$(echo "${CONFIG_JSON}" | jq -r '.https_proxy // empty') if [[ $? -ne 0 || (-z "${HTTP_PROXY_URL}" && -z "${HTTPS_PROXY_URL}") ]]; then echo "Info: The config-json was parsed, but no proxy settings were found." return 0 fi check_protocol "${HTTP_PROXY_URL}" "${supported_protocols[@]}" check_protocol "${HTTPS_PROXY_URL}" "${supported_protocols[@]}" if ! grep -q 'http_proxy' /etc/environment; then sudo bash -c 'echo "export http_proxy=${HTTP_PROXY_URL} export https_proxy=${HTTPS_PROXY_URL} export HTTP_PROXY=${HTTP_PROXY_URL} export HTTPS_PROXY=${HTTPS_PROXY_URL} export no_proxy=localhost,127.0.0.1" >> /etc/environment' source /etc/environment fi # Configure Docker to use a proxy sudo mkdir -p /etc/systemd/system/docker.service.d sudo bash -c 'echo "[Service] Environment=\"HTTP_PROXY=${HTTP_PROXY_URL}\" Environment=\"HTTPS_PROXY=${HTTPS_PROXY_URL}\" Environment=\"NO_PROXY=localhost,127.0.0.1\"" > /etc/systemd/system/docker.service.d/proxy.conf' sudo systemctl daemon-reload sudo systemctl restart docker echo "Info: docker and system environment are now configured to use the proxy settings" } deploy_dcgm_exporter() { CONFIG_JSON_BASE64=$(grep 'config-json' /opt/dlvm/ovf-env.xml | sed -n 's/.*oe:value="\([^"]*\).*/\1/p') CONFIG_JSON=$(echo ${CONFIG_JSON_BASE64} | base64 --decode) DCGM_EXPORT_PUBLIC=$(echo "${CONFIG_JSON}" | jq -r '.export_dcgm_to_public // empty') DCGM_EXPORTER_IMAGE="$REGISTRY_URI_PATH/nvidia/k8s/dcgm-exporter" DCGM_EXPORTER_VERSION="3.2.5-3.1.8-ubuntu22.04" if [ -z "${DCGM_EXPORT_PUBLIC}" ] || [ "${DCGM_EXPORT_PUBLIC}" != "true" ]; then echo "Info: launching DCGM Exporter to collect vGPU metrics, listening only on localhost (127.0.0.1:9400)" docker run -d --gpus all --cap-add SYS_ADMIN -p 127.0.0.1:9400:9400 $DCGM_EXPORTER_IMAGE:$DCGM_EXPORTER_VERSION else echo "Info: launching DCGM Exporter to collect vGPU metrics, exposed on all network interfaces (0.0.0.0:9400)" docker run -d --gpus all --cap-add SYS_ADMIN -p 9400:9400 $DCGM_EXPORTER_IMAGE:$DCGM_EXPORTER_VERSION fi }
- Codificare lo script cloud-init in formato base64.
Utilizzare uno strumento per la codifica base64, ad esempio https://decode64base.com/ per generare la versione codificata dello script cloud-init.
- Creare un file di configurazione in formato JSON che specifichi i dettagli del database pgvector.
“rag”:{“pgvector”:"postgresql://pgadmin:encoded_pgvector_db_admin_password@pgvector_db_ip_address:5432/pgvector_db_name"}
Se è necessario configurare un server proxy per l'accesso a Internet, aggiungere le proprietà
http_proxy
ehttps_proxy
a questo file di configurazione JSON. - Distribuire Deep Learning VM passando il valore base64 dello script cloud-init al parametro OVF di input
user-data
e del file di configurazione JSON al parametroconfig-json
.
- Creare uno script cloud-init per NVIDIA RAG e il database PostgreSQL pgvector creato.