# VMware vSphere Bitfusion 範例指南

修改時間: 2021年9月17日

VMware vSphere Bitfusion 4.0



您可以在 VMware 網站上找到最新的技術文件,網址如下:

https://docs.vmware.com/tw/

**VMware, Inc.** 3401 Hillview Ave. Palo Alto, CA 94304 www.vmware.com

Copyright  $^{\circ}$  2020-2021 VMware, Inc. 保留所有權利。 版權與商標資訊。

# 目錄

# 關於《vSphere Bitfusion 範例指南》 4

### 更新的資訊 5

- 1 將 AI 和 ML 應用程式與 vSphere Bitfusion 搭配使用簡介 6
- **2** 在 vSphere Bitfusion 中安裝並執行 AI 和 ML 應用程式 **7** 安裝 NVIDIA CUDA **7**

安裝 NVIDIA cuDNN 9

在 CentOS 和 Red Hat Linux 上安裝 Python 10

安裝 TensorFlow 11

安裝 PyTorch 和 YOLO 14

# 關於《vSphere Bitfusion 範例指南》

《vSphere Bitfusion 範例指南》提供使用 vSphere Bitfusion 在 VMware vSphere 上執行 TensorFlow、PyTorch 和 YOLO 的相關資訊。

VMware 十分重視包含性。為了在我們的客戶、合作夥伴和內部社群中貫徹這一原則,我們將使用包含性語言建立內容。

《vSphere Bitfusion 範例指南》介紹如何安裝 TensorFlow、PyTorch 和 YOLO 並使用 vSphere Bitfusion 執行測試和基準。本指南可作為瞭解如何在 vSphere Bitfusion 下使用人工智慧 (AI) 以及機器學習 (ML) 應用程式和架構的基礎。

# 預定對象

本資訊適用於想要將 vSphere Bitfusion 與機器學習平台結合使用的任何人。本資訊是針對熟悉使用 VMware vSphere 實作虛擬機器技術和資料中心作業且富有經驗的 Linux 系統管理員而撰寫。

# 更新的資訊

本《vSphere Bitfusion 範例指南》會隨產品的每個版本更新或在必要時進行更新。 下表提供了《vSphere Bitfusion 範例指南》的更新歷程記錄。

| 修訂版本       | 說明                                      |
|------------|-----------------------------------------|
| 2021年9月17日 | ■ 對安裝 YOLO 進行輕微更新。 ■ 對執行 YOLO 測試進行輕微更新。 |
| 2021年8月17日 | 初始版本。                                   |

# 將 AI 和 ML 應用程式與 vSphere Bitfusion 搭配使用簡介

1

若要將 AI 和 ML 應用程式與 vSphere Bitfusion 搭配使用,必須安裝並設定多個元件。

若要將 TensorFlow、PyTorch 和 YOLO 與 vSphere Bitfusion 搭配使用,並執行基準和測試,必須完成以下工作。

- 1 安裝必要元件。
  - a 安裝 vSphere Bitfusion。 請參閱 VMware vSphere Bitfusion 安裝指南。
  - b 安裝 NVIDIA CUDA。
  - c 安裝 NVIDIA cuDNN。
  - d 如果您使用的是 CentOS 或 Red Hat Linux,则必須安裝 Python 3。
- 2 安裝 TensorFlow 和基準。
  - a 安裝 TensorFlow。
  - b 安裝 TensorFlow 基準。
  - c 執行 TensorFlow 基準以衡量系統的效能。
- 3 安裝 PyTorch 和 YOLO。
  - a 安裝 YOLO 和 YOLO 測試。
  - b 執行 YOLO 測試以衡量系統的效能。

# 在 vSphere Bitfusion 中安裝並執行 AI 和 ML 應用程式

2

若要將 AI 和 ML 應用程式與 vSphere Bitfusion 配合使用,請安裝並設定多個軟體套件和程式設計架構。

#### 本章節討論下列主題:

- 安裝 NVIDIA CUDA
- 安裝 NVIDIA cuDNN
- 在 CentOS 和 Red Hat Linux 上安裝 Python
- 安裝 TensorFlow
- 安裝 PyTorch 和 YOLO

## 安裝 NVIDIA CUDA

統一計算裝置架構 (CUDA) 是一種由 NVIDIA 開發的平行計算平台和程式設計模型,可在圖形處理單元 (GPU) 上進行一般計算。CUDA 使用 GPU 的處理能力大幅加快計算應用程式的速度。例如,TensorFlow 和 PyTorch 基準使用 CUDA。

# 在 Ubuntu 上安裝 NVIDIA CUDA

若要在 vSphere Bitfusion 中執行 AI 和 ML 工作流程,必須在 vSphere Bitfusion 用戶端的 Ubuntu Linux 作業系統上安裝 CUDA。

#### 必要條件

確認已在 Linux 作業系統上安裝 vSphere Bitfusion 用戶端。

#### 程序

1 導覽至虛擬機器上要下載 NVIDIA CUDA 發行版的目錄。

cd <download\_directory>

2 下載並移動 cuda-ubuntu2004.pin 檔案。

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86\_64/cuda-ubuntu2004.pin

sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600

3 使用 wget 命令下載適用於 Ubuntu 20.04 的 NVIDIA CUDA 發行版。

**4** 使用 dpkg -i 命令安裝適用於 Ubuntu 20.04 的 CUDA 11 套件。

```
\verb|sudo| dpkg -i cuda-repo-ubuntu2004-11-0-local_11.0.3-450.51.06-1_amd64.deb| \\
```

5 使用 apt-key 命令安裝金鑰以驗證軟體套件。

apt-key 命令會管理 apt 用來驗證套件的金鑰清單。已使用這些金鑰進行驗證的套件將視為受信任。

```
sudo apt-key add /var/cuda-repo-ubuntu2004-11-0-local/7fa2af80.pub
```

6 更新並安裝 CUDA 軟體套件。

```
sudo apt-get update
sudo apt-get install cuda
```

7 (選擇性) 若要確認 GPU 磁碟分割大小或驗證 vSphere Bitfusion 部署上可用的資源,請執行 NVIDIA 系統管理介面 (nvidia-smi) 監控應用程式。

```
bitfusion run -n 1 nvidia-smi
```

8 導覽至包含 CUDA 矩陣乘法 (matrixMul) 範例檔案的目錄。

```
\verb|cd/usr/local/cuda/samples/0_Simple/matrixMul|\\
```

9 針對 matrixMul 範例檔案執行 make 和 bitfusion run 命令。

```
sudo make
bitfusion run -n 1 ./matrixMul
```

#### 後續步驟

安裝並設定 NVIDIA cuDNN。請參閱安裝 NVIDIA cuDNN。

# 在 CentOS 或 Red Hat Linux 上安裝 NVIDIA CUDA

若要在 vSphere Bitfusion 中執行 AI 和 ML 工作流程,必須在 vSphere Bitfusion 用戶端的 CentOS 或 Red Hat Linux 作業系統上安裝 CUDA。

#### 必要條件

確認已在 CentOS 或 Red Hat Linux 作業系統上安裝 vSphere Bitfusion 用戶端。

#### 程序

1 導覽至虛擬機器上要下載 NVIDIA CUDA 發行版的目錄。

```
cd <download directory>
```

2 若要下載適用於 CentOS 8 或 Red Hat Linux 8 的 NVIDIA CUDA 11 套件,請執行 wget 命令。

 $\label{local_solution} wget\ https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda-reporbel8-11-0-local-11.0.3\_450.51.06-1.x86\_64.rpm$ 

3 若要安裝 CUDA 套件,請執行 rpm -i 命令。

```
sudo rpm -i cuda-repo-rhel8-11-0-local-11.0.3_450.51.06-1.x86_64.rpm
```

**4** 按如下所示執行 yum clean all 和 yum -y install 命令,以更新您的環境並安裝 CUDA 軟體套件。

```
sudo yum clean all
sudo yum -y install cuda
```

**5** (選擇性) 若要確認 GPU 磁碟分割大小或驗證 vSphere Bitfusion 部署上可用的資源,請執行 NVIDIA 系統管理介面 (nvidia-smi) 監控應用程式。

```
bitfusion run -n 1 nvidia-smi
```

6 導覽至包含 CUDA 矩陣乘法 (matrixMul) 範例檔案的目錄。

```
cd /usr/local/cuda/samples/0_Simple/matrixMul
```

7 針對 matrixMul 範例檔案執行 make 和 bitfusion run 命令。

```
sudo make
bitfusion run -n 1 ./matrixMul
```

#### 後續步驟

安裝並設定 NVIDIA cuDNN。請參閱安裝 NVIDIA cuDNN。

# 安裝 NVIDIA cuDNN

NVIDIA CUDA Deep Neural Network (cuDNN) 是一個 GPU 加速的原語庫,用於深度神經網路。

#### 必要條件

- 建立一個 NVIDIA 開發人員帳戶,以從該帳戶下載與您的 NVIDIA CUDA 版本相符且適用於您的 Linux 發行版的 cuDNN 套件。請參閱 https://developer.nvidia.com/cudnn。
- 確認您已安裝 vSphere Bitfusion 用戶端。
- 確認您已安裝 NVIDIA CUDA。

#### 程序

- 1 透過執行適用於您的 Linux 發行版的命令序列來安裝 NVIDIA cuDNN 套件。
  - ◆ Ubuntu 版本 20.04

```
sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.0_amd64.deb
```

◆ CentOS 8 和 Red Hat Linux 8

```
sudo rpm -ivh libcudnn8-8.0.5.39-1.cuda11.0.x86_64.rpm
```

2 (選擇性) 若要確認 NVIDIA cuDNN 是否已安裝,請執行 ldconfig -p | grep cudnn。

#### 後續步驟

- 如果您使用的是 CentOS 或 Red Hat Linux,則必須先安裝 Python 3。請參閱在 CentOS 和 Red Hat Linux 上安裝 Python。
- 如果您使用的是 Ubuntu Linux,則可以安裝 TensorFlow、PyTorch 和 YOLO。

# 在 CentOS 和 Red Hat Linux 上安裝 Python

對於 CentOS 和 Red Hat Linux,必須安裝 Python 3。

如果您使用的是 Ubuntu, 則無需執行此程序。Ubuntu 已預先安裝了 Python 3。

#### 程序

1 透過執行 yum update 命令,更新所有目前已安裝的套件。

```
sudo yum update
```

2 若要安裝 Python 3, 請執行 dnf 命令。

```
sudo dnf install python3
```

3 (選擇性) 若要確認您使用的是 Python 3, 請執行 python 3 -V 命令。

```
python3 -V
Python 3.6.8
```

4 (選擇性)建立虛擬機器的快照。

#### 後續步驟

安裝 TensorFlow、PyTorch 和 YOLO。請參閱安裝 TensorFlow 和安裝 PyTorch 和 YOLO。

## 安裝 TensorFlow

TensorFlow 是一個端對端的機器學習開放原始碼平台。它有一個全面靈活的工具、程式庫和社群資源生態系統,可用於協助研究人員推送 ML 中的先進技術,以及協助開發人員輕鬆建置和部署 ML 支援的應用程式。

TensorFlow 可在一系列工作中使用,但特別側重於深度神經網路的訓練和推理。該平台是基於資料流程和可微分程式設計的符號數學程式庫。

## 安裝 TensorFlow

TensorFlow 是您搭配 vSphere Bitfusion 使用的機器學習架構。

使用適用於 Python 3 的套件安裝程式 pip3 安裝 TensorFlow。此程序適用於 Ubuntu 20.04、CentOS 8 和 Red Hat Linux 8。

#### 必要條件

- 確認您已安裝 vSphere Bitfusion 用戶端。
- 確認您已在 Linux 作業系統上安裝 NVIDIA CUDA 和 NVIDIA cuDNN。

#### 程序

1 如果在 Ubuntu 20.04 上安裝了 TensorFlow,請安裝其他 Python 資源。

```
sudo apt-get -y install python3-testresources
```

- 2 透過執行適用於您的 Linux 發行版和版本的命令順序來安裝 pip3。
  - Ubuntu 20.04

```
sudo apt-get install -y python3-pip
```

■ CentOS 8 和 Red Hat Linux 8

```
sudo yum install -y python36-devel
sudo pip3 install -U pip setuptools
```

**3** 使用 pip3 install 命令安裝 **TensorFlow**。

```
sudo pip3 install tensorflow-gpu==2.4
```

## 安裝 TensorFlow 基準

TensorFlow 基準是一種開放原始碼 ML 應用程式, 旨在測試 TensorFlow 架構的效能。

可以將 TensorFlow 基準建立分支並下載至本機環境。在 Git 中,分支是一條獨立的開發線。

#### 必要條件

確認您已安裝 TensorFlow。

#### 程序

- 1 安裝 git。
  - Ubuntu 20.04

```
sudo apt install -y git
```

■ CentOS 8 和 Red Hat Linux 8

```
sudo yum -y update
sudo yum install git
```

2 建立 ~/bitfusion 並將其設為您的工作目錄。

```
mkdir -p bitfusion
cd ~/bitfusion
```

3 將 Tensorflow 基準的 Git 存放庫複製到您的本機環境。

```
git clone https://github.com/tensorflow/benchmarks.git
```

4 導覽至基準目錄並列出存放庫的分支。

```
cd benchmarks
git branch -a

master
remotes/origin/HEAD -> origin/master
...
remotes/origin/cnn_tf_v1.13_compatible
...
remotes/origin/cnn_tf_v2.1_compatible
...
```

**5** 執行 Git 簽出並列出 TensorFlow 基準存放庫。

```
git checkout cnn_tf_v2.1_compatible

Branch cnn_tf_v2.1_compatible set up to track remote branch cnn_tf_v2.1_compatible from origin.

Switched to a new branch 'cnn_tf_v2.1_compatible'

git branch

cnn_tf_tf_v2.1_compatible
master
```

# 執行 TensorFlow 基準

可以執行 TensorFlow 基準以測試 vSphere Bitfusion 和 TensorFlow 部署的效能。

透過執行 TensorFlow 基準並使用各種組態,可以瞭解 ML 工作負載在 vSphere Bitfusion 環境中的回應方式。

#### 程序

- 1 若要導覽至 ~/bitfusion/ 目錄,請執行 cd ~/bitfusion/。
- 2 若要使用 tf\_cnn\_benchmarks.py 基準指令碼,請執行 bitfusion run 命令。

透過執行範例中的命令,可以使用單一 GPU 的全部記憶體和 /data 目錄中預先安裝的 ML 資料。

```
bitfusion run -n 1 -- python3 \
    ./benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
    --data_format=NCHW \
    --batch_size=64 \
    --model=resnet50 \
    --variable_update=replicated \
    --local_parameter_device=gpu \
    --nodistortions \
    --num_gpus=1 \
    --num_batches=100 \
    --data_dir=/data \
    --data_name=imagenet \
    --use_fp16=False
```

**3** 若要使用 tf\_cnn\_benchmarks.py 基準指令碼,請執行具有 -p 0.67 參數的 bitfusion run 命 令。

透過執行範例中的命令,可以使用單一 GPU 的 67% 的記憶體和 /data 目錄中預先安裝的 ML 資料。-p 0.67 參數可讓您在其餘 33% 的 GPU 記憶體磁碟分割中執行其他工作。

```
bitfusion run -n 1 -p 0.67 -- python3 \
./benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
--data_format=NCHW \
--batch_size=64 \
--model=resnet50 \
--variable_update=replicated \
--local_parameter_device=gpu \
--nodistortions \
--num_gpus=1 \
--num_batches=100 \
--data_dir=/data \
--data_name=imagenet \
--use_fp16=False
```

4 若要使用 tf\_cnn\_benchmarks.py 基準指令碼,請使用整合資料執行 bitfusion run 命令。

透過執行範例中的命令,可以使用單一 GPU 的全部記憶體,而不使用預先安裝的 ML 資料。 TensorFlow 可以使用一組模擬映像建立整合資料。

```
bitfusion run -n 1 -- python3 \
./benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
--data_format=NCHW \
--batch size=64 \
```

```
--model=resnet50 \
--variable_update=replicated \
--local_parameter_device=gpu \
--nodistortions \
--num_gpus=1 \
--num_batches=100 \
--use_fp16=False
```

#### 結果

您現在可以透過 vSphere Bitfusion 使用遠端伺服器的共用 GPU 執行 TensorFlow 基準。基準支援許多模型和參數,可協助您探索機器學習學科中的廣闊空間。如需詳細資訊,請參閱 VMware vSphere Bitfusion 使用者指南。

# 安裝 PyTorch 和 YOLO

PyTorch 是基於 Torch 程式庫的開放原始碼機器學習程式庫,用於電腦視覺和自然語言處理等應用程式。 它是根據 Modified BSD 授權發佈的免費開放原始碼軟體。

可以使用 PyTorch 實作基於 You Only Look Once (YOLO) v3 的物件偵測器。YOLO 是一個物件偵測器,它使用深度卷積神經網路學習的特徵偵測物件。

## 安裝 YOLO

YOLO 是一個最小的 PyTorch 實作,支援訓練、推理和評估。PyTorch 是一個機器學習 (ML) 程式庫,可與 vSphere Bitfusion 配合使用。YOLO 測試是開放原始碼 ML 應用程式,旨在測試 vSphere Bitfusion 部署的效能。

此程序適用於 Ubuntu 20.04、CentOS 8 和 Red Hat Linux 8。

#### 必要條件

- 確認您已安裝 vSphere Bitfusion 用戶端。
- 確認您已在 Linux 作業系統上安裝 NVIDIA CUDA 和 NVIDIA cuDNN。
- 確認虛擬機器至少具有 150 GB 的可用空間。

#### 程序

1 建立 bitfusion 資料夾並導覽至該資料夾。

```
mkdir -p ~/bitfusion
cd ~/bitfusion
```

- 2 為 Ubuntu Linux 作業系統安裝其他資源。
  - a 從所有設定的來源下載套件資訊。

sudo apt update

b 安裝 zip。

sudo apt install -y zip

c 安裝 Python 測試資源。

sudo apt install -y python3-testresources

d 安裝 libgl1-mesa-glx 套件。

sudo apt install -y libgl1-mesa-glx

- **3** 安裝 git。
  - Ubuntu 20.04

sudo apt install -y git

■ CentOS 8 和 Red Hat Linux 8

sudo yum install -y git

- 4 透過執行適用於您的 Linux 發行版和版本的命令順序來安裝 pip3。
  - Ubuntu 20.04

sudo apt install -y python3-pip

CentOS 8 和 Red Hat Linux 8

sudo yum install -y python36-devel sudo pip3 install -U pip setuptools

- 5 安裝 YOLO 和 YOLO 測試。
  - a 使用 git clone 命令下載 YOLO 存放庫。

git clone https://github.com/eriklindernoren/PyTorch-YOLOv3

b 導覽至 weights 資料夾。

cd PyTorch-YOLOv3/weights

c 執行 download weights.sh 安裝程式指令碼。

bash download weights.sh

d 導覽至 data 資料夾。

cd ../data

e 執行 get coco dataset.sh 安裝程式指令碼。

```
bash get_coco_dataset.sh
```

- f 使用 cd .. 命令導覽至主資料夾。
- g 安裝並使用 Poetry 完成 YOLO 安裝過程。

Poetry 是 Python 中用於相依性管理和封裝的工具。

```
pip3 install poetry --user
export PATH=~/.local/bin:$PATH
poetry install
```

### 執行 YOLO 測試

透過執行 YOLO 測試,可以檢查 vSphere Bitfusion 環境中 ML 工作負載的效能。

#### 必要條件

- 確認您已安裝 vSphere Bitfusion 用戶端。
- 確認您已在 Linux 發行版上安裝 CUDA 和 cuDNN。
- 確認您已安裝 YOLO 和 YOLO 測試指令碼。

#### 程序

- 1 導覽至 cd PyTorch-YOLOv3 資料夾。
- 2 (選擇性)驗證是否已成功安裝 YOLO。
  - a 使用 vSphere Bitfusion 用戶端虛擬機器的 CPU 執行 YOLO 測試。

```
poetry run yolo-test --weights weights/yolov3.weights
```

- b YOLO 啟動後,按鍵盤上的 Control + C 取消測試程序。
  - 使用 CPU 計算能力的 YOLO 測試需要很長時間才能完成。
- 3 若要使用 GPU 執行 yolov3.weights 測試指令碼,請使用 bitfusion run 命令。

透過執行以下命令,可以使用單一 GPU 的全部記憶體。

```
bitfusion run -n 1 -- poetry run yolo-test --weights weights/yolov3.weights
```

#### 結果

您現在可以透過 vSphere Bitfusion 使用遠端伺服器的共用 GPU 執行 YOLO 測試。這些測試可協助您瞭解如何在機器學習專業領域中使用 YOLO。