
Endpoint Operations
Management Agent Plug-
in Development Kit
vRealize Operations Manager 6.1

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 2

You can find the most up-to-date technical documentation on the VMware website at:

https://docs.vmware.com/

If you have comments about this documentation, submit your feedback to

docfeedback@vmware.com

Copyright © 2018 VMware, Inc. All rights reserved. Copyright and trademark information.

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

https://docs.vmware.com/
mailto:docfeedback@vmware.com
http://pubs.vmware.com/copyright-trademark.html

Contents

About the Endpoint Operations Management Agent Plug-in Development Kit 4

1 Introduction to Plug-in Development 5

The Role of the Server and Agent in Plug-ins 5

Technical Overview 6

Plug-in Implementations 6

Using Support Classes to Simplify a Plug-in 6

Writing Plug-ins 7

Running and Testing Plug-ins from the Command Line 26

2 Using Auto-Discovery Support Classes in Plug-ins 41

Auto-Discovery Classes 41

Auto-Discovery Interfaces 42

Specifying Auto-Discovery Implementation for a Resource Type 43

Measurement Plug-ins 44

3 Working with Plug-in Descriptors 50

Hierarchy of Managed Object Types 50

Management Functions and Classes for Object Types 51

Inventory and Configuration Data for Object Types 51

Metrics to Collect for Each Object Type 51

Structure of a Plug-in Descriptor 51

Functionality of Plug-in Descriptor Elements 53

4 Plug-In Support Classes 55

Auto-Discovery Support Classes 55

Measurement Support Classes 70

ProductPlugin Class 73

ServerResource Class 73

ServiceResource Class 80

ConfigResponse Class 80

VMware, Inc. 3

About the
Endpoint Operations Management Agent
Plug-in Development Kit

The Endpoint Operations Management Agent Plug-in Development Kit documents the XML plug-in
descriptor that is the basis of every plug-in. Endpoint Operations Management supports classes for auto-
discovery, measurement, control, and other management functions. It provides information about
developing VMware vRealize Operations Manager product plug-ins to manage new object types.

Intended Audience
This information is intended for developers who build or customize plug-ins.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For
definitions of terms as they are used in VMware technical documentation, go to
http://www.vmware.com/support/pubs.

VMware, Inc. 4

http://www.vmware.com/support/pubs

Introduction to Plug-in
Development 1
Plug-ins are the interface between vRealize Operations Manager and products on the network you want
to manage.

You can develop your own plug-ins to extend the functionality of vRealize Operations Manager coverage
to products or parts of products not yet covered. For information about the
Endpoint Operations Management source code and the plug-ins provided by VMware, see
https://github.com/vmware/ep-ops-management.

What Plug-ins Do
Plug-in development requires an understanding of the vRealize Operations Manager inventory model and
of the management functions that plug-ins implement. Management functions can include:

Auto-Discovery Plug-ins can implement auto-discovery of server resources, services
resources, and application resources. Custom plug-ins usually just call the
vRealize Operations Manager built-in ServerDetector class.

Monitoring Plug-ins can implement metric collection, defining and collecting metrics
and configuring them for display in the vRealize Operations Manager user
interface. Measurement plug-ins implement monitoring.

You can use plug-ins discover, collect data from, and control resources; plug-ins cannot be used to
change alerting, reporting, or similar, server-side functionality.

This chapter includes the following topics:
n The Role of the Server and Agent in Plug-ins

n Technical Overview

n Plug-in Implementations

n Using Support Classes to Simplify a Plug-in

n Writing Plug-ins

n Running and Testing Plug-ins from the Command Line

The Role of the Server and Agent in Plug-ins
Plug-ins exist on the server and you can download them automatically to the agents.

VMware, Inc. 5

https://github.com/vmware/ep-ops-management

The agent gathers all the data from resources and generally communicates with the resource. Using the
plug-in, the agent can:

n Auto-discover resources

n Collect resource metrics

The server manages metadata, including:

n Platform, server, and service resource types and how the plug-in's targeted resources map to the
inventory model.

n The configuration schema for each resource.

Technical Overview
vRealize Operations Manager plug-ins are self-contained .jar or .xml files that are deployed on both the
server and every agent that you want to run the plug-in. Every plug-in contains, at a minimum, an XML
descriptor, which is either a standalone .xml file or embedded in the .jar file.

Plug-in Implementations
Consider measurement, control, and so on, as types of plug-ins. These types of plug-ins can be created
for any type of object.

You write different implementations of plug-in types, depending on the type of object and how it
communicates and presents its data. The different implementations are:

n Script

n JMX

n SQL

n SNMP

Using Support Classes to Simplify a Plug-in
vRealize Operations Manager includes a number of support classes that you can invoke in your own
plug-ins to abstract and simplify its construction.

vRealize Operations Manager provides the following support classes:

Table 1‑1. vRealize Operations Manager Support Classes

Category Support Classes When to Invoke the Support Class

Scripting qmail, Sendmail, Sybase

SNMP Squid, Cisco IOS

JMX JBoss, WLS, WAS, ActiveMQ, Jetty

JDBC MySQL, PostgreSQL, Oracle To gather database system tables metrics

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 6

Table 1‑1. vRealize Operations Manager Support Classes (Continued)

Category Support Classes When to Invoke the Support Class

Win-Perf Counters IIS, Exchange, DS, .NET To gather metrics from an application that
surfaces perf counters

SIGAR System, Process, Netstat To communicate with an operating
system. SIGAR is HQ's proprietary OS-
independent API

Net Protocols HTTP, FTP, SMTP, and so on To communicate with platform services
that HQ already has built-in, but you might
want to gather additional metrics from it

Vendor Citrix, DB2, VMware

Writing Plug-ins
While the interface with vRealize Operations Manager plug-ins is straightforward, you also must
determine how to retrieve data from a managed resources and how it should appear in the inventory
model, and at what level.

Plug-in Naming
Plug-in names must be in the following formats, where PluginName is the name of the plug-in, as
specified in the root plugin element of the plug-in descriptor:

n PluginName-plugin.jar for a plug-in that contains program or script files in addition to the plug-in
XML descriptor.

n PluginName-plugin.xml for a plug-in that consists only of the plug-in XML descriptor.

JMX Plug-in
Auto-discovery (called "auto-inventory" within plug-ins) is easily implemented by implementing a
vRealize Operations Manager-provided autoinventory plug-in.

To implement auto-discovery at the server level, you must invoke an autoinventory plug-in with the
MxServerDetector class within the server tag:

<server name="Java Server Name" version ="version #">

...

<plugin type="autoinventory" class="org.hyperic.hq.product.jmx.MxServerDetector"/>

...

</server>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 7

In the case of service, auto-discovery is supported for custom MBean services, driven by the
OBJECT_NAME property. To implement auto-discovery at the service level, invoke the autoinventory plug-in,
leaving out the class attribute, within a service tag:

<service name="Java Service Name">

...

<plugin type="autoinventory"/>

...

</service>

The JMX plug-in uses the MBeanServer.queryNames method to discover a service for each MBean
instance. In the case where the OBJECT_NAME contains configuration properties, the properties are auto-
configured.

By default, auto-discovered service names are composed using the hosting-server name, configuration
properties, and service type name. For example:

"myhost Sun JVM 1.5 localhost /jsp-examples WebApp String Cache"

You can override the naming using the AUTOINVENTORY_NAME property:

<property name="AUTOINVENTORY_NAME"

 value="%platform.name% %path% Tomcat WebApp String Cache"/>

You can use the configuration properties from the platform, hosting server, and the service itself in the
%replacement% strings, resulting in a name such as:

"myhost /jsp-examples Tomcat WebApp String Cache"

Discovering Custom Properties
Discovery of Custom Properties is supported using the OBJECT_NAME and MBeanServer.getAttribute.

You define a properties tag with any number of property tags where the name attribute value is that of an
MBean attribute:

<properties>

 <property name="cacheMaxSize"

 description="Maximum Cache Size"/>

</properties>

that maps to the following MBean interface method:

public interface WebAppCacheMBean {

 public int getCacheMaxSize();

}

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 8

Custom MBean Plug-in Examples
Here are examples of MBean plugins that you can use to assist you in creating your plug-ins.

tomcat-string-cache-plugin.xml

<plugin>

 <service name="String Cache"

 server="Sun JVM" version="1.5">

 <property name="OBJECT_NAME"

 value="Catalina:type=StringCache"/>

 <property name="AUTOINVENTORY_NAME"

 value="%platform.name% Tomcat String Cache"/>

 <plugin type="autoinventory"/>

 <plugin type="measurement"

 class="org.hyperic.hq.product.jmx.MxMeasurementPlugin"/>

 <plugin type="control"

 class="org.hyperic.hq.product.jmx.MxControlPlugin"/>

 <!-- reset is an MBean operation, set* are attribute setters -->

 <actions include="reset,setcacheSize,settrainThreshold"/>

 <properties>

 <property name="cacheSize" description="Cache Size"/>

 <property name="trainThreshold" description="TrainThreshold"/>

 </properties>

 <filter name="template"

 value="${OBJECT_NAME}:${alias}"/>

 <metric name="Availability"

 template="${OBJECT_NAME}:Availability"

 indicator="true"/>

 <metric name="Cache Hits"

 alias="hitCount"

 collectionType="trendsup"

 indicator="true"/>

 </service>

</plugin>

tomcat-webapp-cache-plugin.xml

<plugin>

 <service name="WebApp Cache"

 server="Sun JVM" version="1.5">

 <property name="OBJECT_NAME"

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 9

 value="Catalina:type=Cache,host=*,path=*"/>

 <property name="AUTOINVENTORY_NAME"

 value="%platform.name% %path% Tomcat WebApp Cache"/>

 <plugin type="autoinventory"/>

 <plugin type="measurement"

 class="org.hyperic.hq.product.jmx.MxMeasurementPlugin"/>

 <!-- set* are attribute setters, the rest are MBean operations-->

 <actions include="setscacheMaxSize,unload,lookup,allocate"/>

 <config>

 <option name="host"

 description="Host name"

 default="localhost"/>

 <option name="path"

 description="Path"

 default="/jsp-examples"/>

 </config>

 <properties>

 <property name="cacheMaxSize" description="Maximum Cache Size"/>

 </properties>

 <filter name="template"

 value="${OBJECT_NAME}:${alias}"/>

 <metric name="Availability"

 template="${OBJECT_NAME}:Availability"

 indicator="true"/>

 <metric name="Access Count"

 alias="accessCount"

 collectionType="trendsup"

 indicator="true"/>

 <metric name="Hit Count"

 alias="hitsCount"

 collectionType="trendsup"

 indicator="true"/>

 <metric name="Size"

 alias="cacheSize"/>

 </service>

</plugin>

Script Plug-ins
A script plug-in is a plug-in that runs one or more scripts that return process metrics.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 10

A script plug-in uses the org.hyperic.hq.product.DaemonDetector support to discover resources
from the process table — DaemonDetector runs a PTQL process.query.

Script Plug-in Contents and Packaging
A script plug-in comprises the following components.

n An XML plug-in descriptor that defines the monitored process and its properties, along with the
metrics that the script reports.

n A script that returns metric name: value pairs.

You can embed your script in the XML plug-in descriptor, in which case you deploy only the XML file.
If your script is in its own file, you reference it in the descriptor, and deploy an archive containing the
script and the descriptor.

Save the script in AgentHome/bundles/AgentBundleDir/pdk/scripts/, or in the XML descriptor.

Requirements for Script
Note the following requirements for writing a script plug-in.

n The script can be written in any required language. For example, Batch for Windows and Shell for
Linux.

n A measurement script must report metrics as name-value pairs. For example,

% ./pdk/scripts/device_iostat.pl sda

rrqm/s=0.02

wrqm/s=0.59

r/s=0.07

w/s=0.54

rsec/s=2.00

wsec/s=9.06

avgrq-sz=17.95

avgqu-sz=0.00

await=4.21

svctm=1.75

%util=0.11

n Unicode characters must be escaped.

Unicode characters in a script are decoded during script processing. For example, the string %3D is
decoded to an equals sign (=). To preserve the value of s string that might be interpreted as a unicode
character, escape the string with a double backslash, for example: \\%3D.

Defining the Proxy Resources in the Plug-in Descriptor
If the plug-in manages a single process, model the monitored process as a platform service. Specify it in
a <service> element in the root <plugin> element of the descriptor.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 11

If the plug-in manages a server and its component services, script reports on a multiple services, create a
server-service hierarchy. Specify the parent <server> element in the root <plugin> element of the
descriptor, and specify each of the component services as a child <service> element.

Defining Management Functions in a Script Plug-in
A script plug-in can perform various management functions, including auto-discovery, measurement and
control.

Auto-Discovery

Script plug-ins use the org.hyperic.hq.product.DaemonDetector auto-discovery support class to
discover a process. DaemonDetector requires a PTQL process query.

Determine the PTQL statement that identifies the target process. The most common query types for
discovering a process are:

Query Type Description

State.Name.eq=BASENAME Where BASENAME is the base name of the process executable (or regex) and uniquely identifies
it. For example, State.Name.eq=crond .

Pid.PidFile.eq=PIDFILE Where PIDFILE is the path and name of the process PID file. For example,
Pid.PidFile.eq=/var/run/sshd.pid.

This query is useful if the process base name does not uniquely identify the process.

Pid.Service.eq=SERVICENAME Where SERVICENAME is the name of the process.

This query is useful in Windows environments. For example, Pid.Service.eq=Eventlog.

You can supply multiple, comma-separated PTQL queries, if necessary.

For a Java process, you typically must specify command line arguments for the process to identify it.

To define auto-discovery in the plug-in descriptor, if you have defined a server-service hierarchy, in the
<server> define a <property> element whose name is HAS_BUILTIN_SERVICES and value="true", so
that component services are discovered.

When you define the auto-discovery function, identify org.hyperic.hq.product.DaemonDetector as
the class that performs it in a <plugin> element whose type is "autoinventory". If you defined a server-
service hierarchy, put the <plugin> element in the <server> element. If the plug-in manages a single
service, put it in the <service> element that models the process to discover.

You also need to define the process query in an <option> element whose name is process.query and
whose default is the PTQL query in the same resource element that contains the <plugin> element.

Measurement

Script plug-ins use the org.hyperic.hq.product.MeasurementPlugin class to report the metrics
returned by the scripts. MeasurementPlugin accepts metric name:value pairs.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 12

You define the measurement function and identify MeasurementPlugin as the class that performs it in a
<plugin> element whose type is measurement. If you have defined a server-service hierarchy, put the
<plugin> element in the <server> element. If your resource "hierarchy" is simply a single platform
service, put <plugin> element in the <service> element that models the process.

You must also define a <metric> element for each metric reported by the script. You must define at least
the name, indicator, and template attributes.

The form of a metric template for a metric collected by a script is:

exec:timeout=TIMEOUT,exec=PREFIX,file=FILENAME,exec=MODE,args=ARGUMENTS:METRIC

where

TIMEOUT The time in seconds to wait for a response when the script runs. Optional, but recommended.

PREFIX The script prefix, for example, sudo.

FILENAME The path and name of script that returns the metric. Mandatory.

ARGUMENTS A space-separated list of argument values to pass to the script.

METRIC The name of the metric.

For example, exec:timeout=10,exec=sudo,file=pdk/scripts/metric_script.pl,args=sda:w/s.

Script Plug-in Examples
Use these examples to help you create your own script plug-ins.

Control Script Example

<?xml version="1.0" encoding="UTF-8"?>

<plugin name="hqcont-1-script-solution">

 <script name="controlscript.bat">

<![CDATA[

echo controlscript called

]]>

 </script>

 <script name="controlscript.sh">

<![CDATA[

#!sh

echo controlscript called

]]>

 </script>

 <server name="HQCONT-1 My Control Server">

 <property name="PROC_QUERY"

 value="State.Name.eq=firefox"/>

 <config>

 <option default="State.Name.eq=firefox"

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 13

 name="process.query"

 description="Process Query for singleprocess"/>

 </config>

 <plugin type="autoinventory"

 class="org.hyperic.hq.product.DaemonDetector"/>

 <plugin type="measurement"

 class="org.hyperic.hq.product.MeasurementPlugin"/>

 <config>

 <option name="program"

 description="control program"

 default="controlscript.bat"/>

 </config>

 <plugin type="control"

 class="org.hyperic.hq.product.ScriptControlPlugin"/>

 <property name="DEFAULT_PROGRAM" value="controlscript.bat"/>

 <actions include="start"/>

 </server>

</plugin>

iostat Script Example

<pluginname="IoDevice">

 <property name="version"

 value="1.0"/>

 <service name="I/O Device">

 <config>

 <option name="script"

 description="Collector script"

 default="pdk/scripts/device_iostat.pl"/>

 <option name="device"

 description="Device name"

 default="sda"/>

 </config>

 <filter name="template"

 value="exec:file=%script%,args=%device%"/>

 <metric name="Availability"

 template="${template}:Availability"

 indicator="true"/>

 <metric name="Read Requests Merged per Second"

 category="THROUGHPUT"

 template="${template}:rrqm/s"/>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 14

 <metric name="Write Requests Merged per Second"

 category="THROUGHPUT"

 template="${template}:wrqm/s"/>

 <metric name="Read Requests per Second"

 category="THROUGHPUT"

 indicator="true"

 template="${template}:r/s"/>

 <metric name="Write Requests per Second"

 category="THROUGHPUT"

 indicator="true"

 template="${template}:w/s"/>

 <metric name="Sectors Read per Second"

 category="THROUGHPUT"

 template="${template}:rsec/s"/>

 <metric name="Sectors Writen per Second"

 category="THROUGHPUT"

 template="${template}:wsec/s"/>

 <metric name="Average Sector Request Size"

 category="THROUGHPUT"

 template="${template}:avgrq-sz"/>

 <metric name="Average Queue Length"

 category="PERFORMANCE"

 template="${template}:avgqu-sz"/>

 <metric name="Average Wait Time"

 category="PERFORMANCE"

 indicator="true"

 units="ms"

 template="${template}:await"/>

 <metric name="Average Service Time"

 category="PERFORMANCE"

 units="ms"

 template="${template}:svctm"/>

 <metric name="CPU Usage"

 category="PERFORMANCE"

 units="percent"

 template="${template}:%util"/>

 </service>

</plugin>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 15

sendmail Plug-in Descriptor

<?xml version="1.0"?>

<!DOCTYPE plugin [

 <!ENTITY multi-process-metrics SYSTEM "/pdk/plugins/multi-process-metrics.xml">

]>

<!--

 NOTE: This copyright does *not* cover user programs that use HQ

 program services by normal system calls through the application

 program interfaces provided as part of the Hyperic Plug-in Development

 Kit or the Hyperic Client Development Kit - this is merely considered

 normal use of the program, and does *not* fall under the heading of

 "derived work".

 Copyright (C) [2004-2008], Hyperic, Inc.

 This file is part of HQ.

 HQ is free software; you can redistribute it and/or modify

 it under the terms version 2 of the GNU General Public License as

 published by the Free Software Foundation. This program is distributed

 in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

 even the implied warranty of MERCHANTABILITY or FITNESS FOR A

 PARTICULAR PURPOSE. See the GNU General Public License for more

 details.

 You should have received a copy of the GNU General Public License

 along with this program; if not, write to the Free Software

 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

 USA.

 -->

<plugin>

 <!-- extracted to: pdk/work/scripts/sendmail/hq-sendmail-stat -->

 <script name="hq-sendmail-stat">

 <![CDATA[

#!/bin/sh

linux / aix

[-d "/var/spool/mqueue"] &&

 msgdir="/var/spool/mqueue" &&

 premsgdir="/var/spool/clientmqueue"

solaris

[-d "/usr/spool/mqueue"] &&

 msgdir="/usr/spool/mqueue" &&

 premsgdir="/usr/spool/clientmqueue"

If the mqueue dir doesn't exist, exit 1

[-z "$msgdir" -o ! -r "$msgdir"] &&

 exit 1

May not have permission to cd to the mqueue, make sure

stdout/err don't get echo'd

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 16

cd $msgdir > /dev/null 2>&1

["$?" != "0"] &&

 exit 1

count msgs in sendmail mqueue dir. DO NOT use find since it

may fail when there are lots of files

messfiles=`ls 2>/dev/null | wc -w`

premessfiles=0

if [! -z "$premsgdir"] && [-d "$premsgdir"] && [-r "$premsgdir"]

then

 [`cd $premsgdir > /dev/null 2>&1`] && ["$?" = "0"] &&

 premessfiles=`ls 2>/dev/null | wc -w`

fi

echo MessagesInQueue=$messfiles

echo MessagesAwaitingPreprocessing=$premessfiles

exit 0

]]>

 </script>

 <server name="Sendmail"

 version="8.x">

 <property name="INVENTORY_ID" value="sendmail"/>

 <!-- hardwire this cosmetic to universal location -->

 <property name="INSTALLPATH" value="/usr/sbin/sendmail"/>

 <config>

 <option name="process.query"

 description="Process Query"

 default="State.Name.eq=sendmail,State.Name.Pne=$1,CredName.User.eq=root"/>

 <option name="exec"

 description="Type "sudo" To Avoid Having Agent As Root"

 default=""/>

 </config>

 <!--notifies the plugin to auto-discover one instance of each service-->

 <property name="HAS_BUILTIN_SERVICES"

 value="true"/>

 <property name="PROC_QUERY"

 value="State.Name.eq=sendmail"/>

 <plugin type="autoinventory"

 class="org.hyperic.hq.product.DaemonDetector"/>

 <plugin type="measurement"

 class="org.hyperic.hq.product.MeasurementPlugin"/>

 <metric name="Availability"

 alias="Availability"

 template="sigar:Type=ProcState,Arg=%process.query%:State"

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 17

 category="AVAILABILITY"

 indicator="true"

 units="percentage"

 collectionType="dynamic"/>

 <service name="Message Submission Process">

 <config>

 <option name="user"

 default="smmsp"

 description="Sendmail Message Submission Process User"/>

 <option name="process.query"

 default="State.Name.eq=sendmail,CredName.User.eq=%user%"

 description="PTQL for Sendmail Message Submission Process"/>

 </config>

 <metric name="Availability"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Processes"

 indicator="true"/>

 &multi-process-metrics;

 </service>

 <service name="Root Daemon Process">

 <plugin type="autoinventory"/>

 <config>

 <option name="process.query"

 default="State.Name.eq=sendmail,State.Name.Pne=$1,CredName.User.eq=root"

 description="PTQL for Sendmail Root Daemon Process"/>

 </config>

 <metric name="Availability"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Processes"

 indicator="true"/>

 &multi-process-metrics;

 </service>

 <!-- sendmail-stat metrics -->

 <filter name="template"

 value="exec:file=pdk/work/scripts/sendmail/hq-sendmail-stat,exec=%exec%:${alias}"/>

 <metric name="Messages In Queue"

 indicator="true"/>

 <metric name="Messages Awaiting Preprocessing"

 indicator="true"/>

 <!-- protocol services+metrics -->

 <service name="SMTP">

 <config>

 <option name="port"

 description="SMTP Post"

 default="25"/>

 <option name="hostname"

 description="SMTP Hostname"

 default="localhost"/>

 </config>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 18

 <filter name="template"

 value="SMTP:hostname=%hostname%,port=%port%:${alias}"/>

 <metric name="Availability"

 indicator="true"/>

 <metric name="Inbound Connections"

 indicator="true"/>

 <metric name="Outbound Connections"

 indicator="true"/>

 </service>

 </server>

 <!-- ==================== Plugin Help =========================== -->

 <help name="Sendmail">

 <![CDATA[

 <p>

 <h3>Configure HQ for monitoring Sendmail</h3>

 </p>

 <p>

 This plugin needs sudo access as root in order to access the appropriate

 Sendmail dirs.

 To configure sudo (in /etc/sudoers):

 Cmnd_Alias HQ_SENDMAIL_STAT = <hqdir>/agent/pdk/work/scripts/sendmail/hq-sendmail-stat

 <agentuser> ALL = NOPASSWD: HQ_SENDMAIL_STAT

 </p>

]]>

 </help>

 <help name="Sendmail 8.x" include="Sendmail"/>

</plugin>

SNMP Plug-in
SNMP is the standard protocol for monitoring network-attached devices, which is leveraged by several
bundled plug-ins and made easy by the Plug-in Development Kit.

The bundled netdevice plug-in provides a generic network device platform type that can be used to
monitor any device that implements IF-MIB (rfc2863) and IP-MIB (rfc4293).

The Network Host platform type extends Network Device with support for HOST-RESOURCES-MIB
(rfc2790).

The Cisco platform also extends Network Device, adding metrics from CISCO-PROCESS-MIB and
CISCO-MEMORY-POOL-MIB.

The Cisco PIXOS platform extends Cisco IOS, adding metrics from CISCO-FIREWALL-MIB.

In any vRealize Operations Manager plug-in, there are two main concepts to understand:

The Inventory Model Resource types define where things live in the hierarchy along with
supported metrics, control actions, log message sources, and so on, as
well as the configuration properties used by each feature.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 19

In the case of implementing a custom SNMP plug-in for a network device,
you are typically defining a platform type that collects any scalar variables
that apply to the device and one or more service types to collect table data
such as interfaces, power supplies, fans, and so on.

The Metric Template
Attribute

The metric template attribute which is a string containing all the information
required to collect a specific data point. In an SNMP plug-in, each of the
metrics correlate to an SNMP OID. Although the object names are
frequently used to gather the required data points in the plug-ins, you can
also use the numeric OID. This has the added benefit of negating the need
for ready access to the MIB file anywhere that the plug-in is used.

Implementing a new SNMP-based plug-in for vRealize Operations Manager starts with locating the device
vendor's MIB files and selecting which OIDs to collect as metrics in vRealize Operations Manager.

JMX-Based Management
provides support for managing and monitoring JMX-enabled applications.

vRealize Operations Manager has a number of built-in plug-ins that monitor specific JMX products,
including:

n Sun JVM 1.5

n ActiveMQ 4.0

n Geronimo 1.0

n Resin 3.0

n JOnAS 4.7

vRealize Operations Manager uses the remote API (http://www.jcp.org/en/jsr/detail?id=160) specified by
JSR-160 to manage products that support JMX 1.2/JSR-160, including the ones listed above. For JMX-
enabled servers that do not support JSR-160, vRealize Operations Manager uses vendor-specific
connectors.

vRealize Operations Manager JMX support classes enable auto-discovery of MBean servers and
MBeans, collection of MBean attributes, and execution of MBean operations.

To enable monitoring, you must configure the JMX-enabled target to accept remote connections. In many
cases, the remote connector is enabled by default, otherwise, you must configure it for remote access.

JMX Product Product Information Link

J2SE 1.5 http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/package-summary.html

MX4J http://mx4j.sourceforge.net/docs/ch03.html

ActiveMQ http://activemq.apache.org/jmx.html

JOnAS http://jonas.objectweb.org/current/doc/doc-en/integrated/howto/JSR160_support.html#JSR160_support

ServiceMix http://servicemix.apache.org/jmx-console.html

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 20

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/package-summary.html
http://mx4j.sourceforge.net/docs/ch03.html
http://activemq.apache.org/jmx.html
http://jonas.objectweb.org/current/doc/doc-en/integrated/howto/JSR160_support.html#JSR160_support

Auto-Discovery of JMX Resources
vRealize Operations Manager discovers a JMX application or server using a Sigar process query.

MBeans are discovered by querying the MBean server for MBeans whose names match those configured
in the plug-in descriptor. Sigar is used to discover servers. Services are discovered via MBean Server
queries (MBeanServer.queryMBeans()).

Measurement MxMeasurement uses Sigar queries for process metrics. Metrics that map
to MBean attributes are obtained via an MBean query
(MBeanServer.getAttribute()).

Note Sun JVM 1.5 type applies to any of the above and any other JMX-enabled server running under a
Sun 1.5 JVM but has its own set of metrics and control actions. Unlike the other server types, Sun JVM
1.5 instances are not auto-discovered.

Configuration Properties for JMX Monitoring
vRealize Operations Manager JMX support classes require the JMX URL and JMX user credentials so
that they can connect to a remote MBean server.

The required credentials are as follows:

jmx.url The JMX service URL. See

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

jmx.username Username, if authentication is required

jmx.password Password, if authentication is required

Configuration options that a user can configure are defined in a <config> element in a plug-in descriptor.
The Plug-in Development Kit includes a global configuration schema named jmx that contains the
required configuration option definitions, as follows.

<config>

<option name="jmx.url" description="JMX URL to MBeanServer"

default="service:jmx:rmi:///jndi/rmi://localhost:6969/jmxrmi"/>

<option name="jmx.username" description="JMX username" optional="true" default=""/>

<option name="jmx.password" description="JMX password" optional="true" default="" type="secret"/>

You can use the following to reference the jmx schema in a plug-in descriptor.

<config include="jmx"/>

Creating a Custom JMX Plug-in
A JMX plug-in consists solely of an XML descriptor. You can include various components in the
descriptor.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 21

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

Defining Service Types to Provide Management via Custom MBeans

Each server type defines several service types such as EJBs, Connection Pools and JMS Queues.
Custom plug-ins define additional service types to provide management via custom MBeans.

The service element defines a service type, for example:

<service name="String Cache"

 server="Sun JVM"

 version="1.5">

</service>

The server attribute must be Sun JVM and the version attribute must be 1.5, or any of the other supported
server/version combinations. The name attribute is the choice of the plug-in implementor.

These services will become part of the inventory model, displayed together with the built-in server service
types in the user interface and the shell. Service extensions also inherit the server configuration
properties that are used to connect to the MBeanServer, jmx.url, jmx.username and jmx.password.

Defining an ObjectName to Access Custom MBeans

To access custom MBeans, the plug-in must define its JMX ObjectName to be used with various
MBeanServer interface methods.

Only one ObjectName is defined per-service type using the property tag within the service tag.

<property name="OBJECT_NAME"

 value="Catalina:type=StringCache"/>

Defining Configuration Properties to Appear in the User Interface

All the configuration properties for a JMX plug-in, appear in the user interface for the object. The default
values for each of these properties can be specified in the plug-in, but users can change the values by
editing the resource identifiers in the vRealize Operations Manager user interface.

If there is only one instance of the String Cache, you can hard-code a property. If you are using multiple
instances that follow the OBJECT_NAME pattern, you use configuration properties to support them.

For example, the WebApp Cache plug-in uses an ObjectName with the following pattern,

<property name="OBJECT_NAME"

 value="Catalina:type=Cache,host=*,path=*"/>

where the ObjectName Domain is always Catalina and type attribute value is always Cache, but the host
and path attributes differ for each instance of the MBean.

The WebApp Cache plug-in defines configuration options for each of the instance properties.

<config>

 <option name="host"

 description="Host name"

 default="localhost"/>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 22

 <option name="path"

 description="Path"

 default="/jsp-examples"/>

</config>

The values of the instance attributes within the OBJECT_NAME is replaced with the value of the
configuration property when used by the plug-in. For example,

"Catalina:type=Cache,host=localhost,path=/jsp-examples"

Defining and Gathering Metrics

Metrics are defined as for other plug-ins but, in the case of custom MBean services, the OBJECT_NAME
property is used to compose the metric template attribute.

Use the OBJECT_NAME property as follows:

<metric name="Access Count"

 template="${OBJECT_NAME}:accessCount"

 category="THROUGHPUT"

 indicator="true"

 collectionType="trendsup"/>

This results in the template being expanded. For example,

template="Catalina:type=Cache,host=localhost,path=/jsp-examples:accessCount"

where accessCount is an attribute of the MBean and can be collected internally using the MBeanServer
interface. For example,

ObjectName name = new ObjectName("Catalina:type=Cache,host=localhost,path=/jsp-examples");

return MBeanServer.getAttribute(name, "accessCount");

The MBean interface attributes collected by tomcat-webapp-cache-plugin.xml as metrics are as
follows.

public interface WebAppCacheMBean {

 public int getAccessCount();

 public int getHitCount();

 public int getCacheSize();

}

Specifying the Availability Metric for MBeans

vRealize Operations Manager JMX plug-ins typically query for an MBean's "Availability" attribute to
determine whether the MBean is available.

If the MBean server returns 1, the MBean is considered available. If the return value is 0, the MBean is
considered unavailable. Other values cause availability to display incorrectly.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 23

Many MBeans do not have an Availability attribute, therefore vRealize Operations Manager JMX
plug-ins treat an Mbean to as available if the query returns an AttributeNotFoundException exception,
assuming that the MBean is available to report that the attribute does not exist. If the MBean server
returns any exception other than AttributeNotFoundException, the MBean is considered to be
unavailable.

Implementing Control Actions

After the OBJECT_NAME property is defined, MBean operations can be exposed as
vRealize Operations Manager control actions by adding the list of method names to the plug-in.

Add the list of method names as follows.

<actions include="reset"/>

The plug-in must also define the control implementation class, which resides in the hq-jmx.jar file.

<plugin type="control"

 class="org.hyperic.hq.product.jmx.MxControlPlugin"/>

The control actions are invoked as MBean operations by the plug-in, as follows

ObjectName name = new ObjectName("Catalina:type=StringCache");

return MbeanServer.invoke(name, "reset", new Object[0], new String[0]);

which maps to the following MBean operation

public interface StringCacheMBean {

 public void reset();

}

Example: WebApp Cache Control Actions

The WebApp Cache plug-in example provides the following control actions:

<actions include="unload,lookup,allocate"/>

which maps to the following MBean operations:

public interface WebAppCacheMBean {

 public boolean unload(String name);

 public CacheEntry lookup(String name);

 public boolean allocate(int value);

}

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 24

Defining the Server Auto-Inventory Element

To implement auto-discovery at the server level, you must invoke an autoinventory plug-in with the
MxServerDetectorclass within the server tag.

Implement auto-discovery as follows,

<server name="Java Server Name" version ="version #">

...

<plugin type="autoinventory" class="org.hyperic.hq.product.jmx.MxServerDetector"/>

...

</server>

In the case of service, auto-discovery is supported for custom MBean services, driven by the
OBJECT_NAME property. To implement auto-discovery at the service level, invoke the autoinventory plug-in,
leaving out the class attribute, within a service tag.

<service name="Java Service Name">

...

<plugin type="autoinventory"/>

...

</service>

The JMX plug-in uses the MBeanServer.queryNames method to discover a service for each MBean
instance. In the case in which the OBJECT_NAME contains configuration properties, the properties are auto-
configured.

By default, auto-discovered service names are composed using the hosting-server name, configuration
properties, and service type name.

"myhost Sun JVM 1.5 localhost /jsp-examples WebApp String Cache"

The naming can be overridden using the AUTOINVENTORY_NAME property.

<property name="AUTOINVENTORY_NAME"

 value="%platform.name% %path% Tomcat WebApp String Cache"/>

Configuration properties from the platform, hosting server, and the service itself can be used in the
%eplacement% strings, resulting in a name such as follows,

"myhost /jsp-examples Tomcat WebApp String Cache"

Discovering Custom Properties

Discovery of custom properties is supported using OBJECT_NAME and MBeanServer.getAttribute.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 25

Define a properties tag with any number of property tags, where the name attribute value is that of an
MBean attribute

<properties>

 <property name="cacheMaxSize"

 description="Maximum Cache Size"/>

</properties>

which maps to the following MBean interface method.

public interface WebAppCacheMBean {

 public int getCacheMaxSize();

}

Running and Testing Plug-ins from the Command Line
You can run plug-ins from a command line prompt, which you might find useful when documenting or
testing your plug-in.

You can test the syntax of a plug-in and invoke any management function that the plug-in supports.

Management functions that can be invoked include the following:

Function Description

Auto-discovery Run the discovery function for one or all plug-ins in the agent's plug-in directory.

Control Run a plug-in control action on a resource.

Metric collection Collect metrics for a resource.

Event Tracking Watch for log or configuration change events for a resource.

Fetch live system data Run supported system commands to obtain CPU, filesystem, and other system data.

Documentation generation functions that can be invoked include the following:

Function Description

Help Output the configuration help specified in the plug-in <help>descriptor element for each resource type, for
one or all plug-ins.

Metric documentation Output metric documentation for each resource type, for one or all plug-ins.

dcs-tools-pdk.jar Command Syntax
To run a plug-in from the command line, it is important that you understand the syntax and the functions
of each of the methods.

The command for running a plug-in from the command line is structured as follows:

java -jar AgentVersion/bundles/AgentBundle/pdk/lib/dcs-tools-pdk-VERSION.jar -m Method -a MethodAction

-p PluginName -t ResourceType -Doption=value

You can use the following information to guide you in your choices.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 26

-m Method

The -m Method command specifies the method to run.

The Method can be one of the following:

lifecycle For details and functionality, see lifecycle Method.

discover For details and functionality, see discover Method.

metric For details and functionality, see metric Method.

control For details and functionality, see GUID-8713429D-A37D-42B9-BEE3-67B8EBDAA6C0#GUID-8713429D-A37D-42B9-
BEE3-67B8EBDAA6C0.

track For details and functionality, see track Method.

generate For details and functionality, see generate Method.

-p PluginName

The -p PluginName command is the product portion of the plug-in name, without the -plugin.jar or -
plugin.xml portion. For example, to run jboss-plugin.jar, you specify -p jboss.

If you use a generated properties file to supply resource properties, you do not have to specify the plug-in
to run on the command line, because the resource properties file identifies the plug-in.

The command is required for the following methods.

n lifecycle

n metric

n control

n track

The command is optional for the following methods.

n discover

n generate

The command is not supported for livedata.

-t ResourceType

The -t ResourceType command specifies the name of a resource type managed by the plug-in you are
running.

If the name includes spaces, you must enclose it in quotes, for example, "JBoss 4.2".

If you use a generated properties file to supply resource properties, you do not have to specify the
resource type on the command line, because the resource properties file identifies the resource type
name for the resource.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 27

The command is required for the following methods.

n metric

n control

n track

n lifedata

The command is not supported for the following methods.

n discover

n generate

-a MethodAction

The MethodAction argument is either supported or required by the method that is called. For example,
when you run the track method, you specify whether you want to track log or configuration events by
including either -a log or -a config in the command line.

-DOption=Value

-DOption=Value sets a property value, where Option=Value specifies the property name and the value
that you assign it.

You must include a -DOption=Value in the command line for every property that you specify. In addition,
you must supply

n The value of a resource property that is required by the method called.

You can reference a generated properties file, rather than supplying each resource property on the
command line.

n The value of an agent or system property that manages agent behavior or plug-in execution.

Generating and Using Resource Properties Files
You can create resource properties files to use when you run plug-ins from the command line. Using a
resource properties file removes the need for you to specify individual property values multiple times in
the command line.

n Resource Properties Files

Generally, plug-ins require the values of one or more resource properties to run. To simplify the
process of testing a plug-in, you can supply the properties in a file instead of the command line.

n Names and Locations of Properties Files

The discover method's properties action writes configuration data for each discovered object in a
directory tree whose root directory, plug-in-properties, is in your current working directory.

n Content of Properties Files

When you run the metric, control, or track methods on an object you must supply resource
configuration data, either explicitly on the command line, or using the properties file for the resource.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 28

n Inherited Resource Properties

Some resource properties might be inherited from a parent resource.

Resource Properties Files
Generally, plug-ins require the values of one or more resource properties to run. To simplify the process of
testing a plug-in, you can supply the properties in a file instead of the command line.

For example, to fetch metrics for a PostgreSQL table, the metric method must know the URL and
database user credentials for the parent PostresSQL server, and the name of the table. The required
properties are jdbcUser, jdbcPassword, table, and jdbcUrl.

Each property that a method requires for a resource type is defined in an <option> element in the XML
descriptor for the plug-in that manages it.

When you run the discover method with the properties method argument, the agent creates a
properties file for each resource instance it discovers. The properties file for a resource contains a name-
value pair for each resource property that is required to run plug-in methods.

The configurable properties that you must supply must be added to the properties file or supplied on the
command line. For example, to check the results of tracking log messages that do not contain a particular
string, you must supply the string on the command line. Specifically, you must set the value of
server.log_track.exclude which is null by default.

The following command supplies some command options and resource properties using the
melba_HQ_jBoss_4.x.properties file and sets the value of server.log_track.exclude on the
command line.

java -jar java -jar AgentVersion/bundles/AgentBundle/pdk/lib/dcs-tools-pdk-shared-VERSION.jar

-m track plugin-properties/jboss-4.2/melba_HQ_jBoss_4.x.properties

-Dserver.log_track.exclude=just kidding

Names and Locations of Properties Files
The discover method's properties action writes configuration data for each discovered object in a
directory tree whose root directory, plug-in-properties, is in your current working directory.

The plugin-properties folder contains a subdirectory for each object type discovered. The folder name
is the object type name, with spaces replaced by dashes, for example, Tomcat-6.0-Connector.

Each object type folder contains a file for each instance of that type discovered. The file name is the full
name of the object instance, with spaces replaced by underscore characters for example
melba_HQ_Tomcat_6.0_7080_Tomcat 6.0_Connector.

Content of Properties Files
When you run the metric, control, or track methods on an object you must supply resource
configuration data, either explicitly on the command line, or using the properties file for the resource.

The properties file simplifies the command by defining the values that you would otherwise set with the -p
and -t options.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 29

The following example of discovery results for a JBoss 4.2 server is used to explain the properties file
content.

same as '-p "jboss"'

dumper.plugin=jboss

same as '-t "JBoss 4.2"'

dumper.type=JBoss 4.2

\#melba HQ JBoss 4.x

\#Fri Jan 22 10:38:10 PST 2010

java.naming.provider.url=jnp://0.0.0.0:2099

program=/Applications/HQEE42GA/server-4.2.0-EE/hq-engine/bin/run.sh

server.log_track.files=../../../logs/server.log

configSet=default

The properties file contains:

n The object's resource type name and the product portion of the name of the plug-in that manages it:

dumper.plugin Specifies the product portion of the plug-in name. This is equivalent to setting the plug-in name in the

command line with -p.

dumper.type Specifies the resource type name. This is equivalent to setting the resource type in the command line with -
t .

n Resource configuration data that is required to use the metric, track, or control methods on an
resource. The sample JBoss properties file above supplies values for java.naming.provider.url,
program, and server.log_track.files.

Inherited Resource Properties
Some resource properties might be inherited from a parent resource.

For example, the properties file for a JBoss 4.2 Hibernate Session Factory service, shown below, includes
all of the properties discovered for its parent - a JBoss 4.2 server. The only service-level property in this
file in Application.

same as '-p "jboss"'

dumper.plugin=jboss

same as '-t "JBoss 4.2 Hibernate Session Factory"'

dumper.type=JBoss 4.2 Hibernate Session Factory

#192.168.0.12 JBoss 4.2 default hq Hibernate Session Factory

#Fri Jan 22 12:56:05 PST 2010

java.naming.provider.url=jnp://0.0.0.0:2099

program=/Applications/HQEE42GA/server-4.2.0-EE/hq-engine/bin/run.sh

application=hq

server.log_track.files=../../../logs/server.log

configSet=default

Properties for Controlling Agent Behavior and Plug-in Execution
You can use -DOption=Value to set any agent or system property.

This table lists some properties that are useful when you run a plug-in from the command line.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 30

Property Description

log Use this property to set the log level. log=debug.

output.dir Use this property to override the default output directory default.

plugins.include This agent property tells theEndpoint Operations Management agent to load a specific plug-in, and only that
agent before executing the method. Otherwise, when you run dcs-tools-pdk-shared-VERSION.jar the
Endpoint Operations Management agent loads all the plug-ins in the plug-in directory.

plugins.exclude This agent property gives the agent a list of plug-ins that must not be loaded before executing the method. The
Endpoint Operations Management agent loads all other plug-ins in the plug-in directory.

exec.sleep Use this system property to override its default value when you are testing a script plug-in. By default,
exec.sleep is 30 seconds. If your script might take longer than that to run, it is useful to increase the value
while you check the plug-in out.

Methods and Functions of the dcs-tools-pdk.jar File
You can use the methods and functions that are specified in the dcs-tools-pdk.jar file when you
create your plug-ins.

n lifecycle Method

You use the lifecycle method to load a plug-in and report any errors found in the plug-in.

n discover Method

You use the discover method to return key attributes for each discovered object to the terminal
window or to a properties file.

n metric Method

You use the metric method to fetch the metric template and the metric value for each metric for
objects that are managed by the plug-in.

n track Method

You use the track method to track log or configuration events.

n generate Method

You use the generate method to generate documentation from the plug-in descriptor.

lifecycle Method
You use the lifecycle method to load a plug-in and report any errors found in the plug-in.

Syntax

The syntax for the lifecycle method is as follows.

$ java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -p PluginName -m lifecycle -

Dplugins.include=PluginName

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 31

Argument Description

-p PluginName Identifies the plug-in to run by the product portion of the plug-in name. For example, to run
jboss-plugin.jar, you specify -p jboss.

-Dplugins.include=PluginName Ensures that only the specified plug-in is loaded. When this is not included, all plug-ins are
loaded.

Example: Results of Running the lifecycle Method on a Plug-in Without Errors

This command runs the lifecycle method for the jboss plug-in. In the example, no errors are found.

$ java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -m lifecycle -p jboss -

Dplugins.include=jboss

Example: Results of Running the lifecycle Method on a Plug-in Containing Errors

This command runs the lifecycle method for the websphere plug-in. In the example, errors are found.

$ java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -m lifecycle -p websphere -

Dplugins.include=websphere

WARN [main] [MetricsTag] MsSQL 2000 include not found: mssql-cache

WARN [main] [MetricsTag] WebSphere 6.1 include not found: WebSphere 6.0

WARN [main] [MetricsTag] WebSphere 6.1 Application include not found: WebSphere 6.0 Application

WARN [main] [MetricsTag] WebSphere 6.1 EJB include not found: WebSphere 6.0 EJB

WARN [main] [MetricsTag] WebSphere 6.1 Webapp include not found: WebSphere 6.0 Webapp

WARN [main] [MetricsTag] WebSphere 6.1 Connection Pool include not found: WebSphere 6.0 Connection Pool

WARN [main] [MetricsTag] WebSphere 6.1 Thread Pool include not found: WebSphere 6.0 Thread Pool

WARN [main] [MetricsTag] WebSphere Admin 6.1 include not found: WebSphere Admin 6.0

discover Method
You use the discover method to return key attributes for each discovered object to the terminal window
or to a properties file.

The method can be run for one or all plug-ins. The returned attributes include the values of the resource's
configuration options. If you save discovery results to a file, you can use that file to supply the required
resource configuration data when you run another method that requires the resource's configuration data.

Syntax

The syntax for the discover method is as follows.

{{java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -m discover -p PluginName -a

properties

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 32

Argument Description

-p PluginName Identifies the plug-in to run by the product portion of the plug-in name. For example, to run jboss-plugin.jar,
you specify -p jboss. If you do not specify the plug-in name, discovery is performed for all the plug-ins in the
agent's plugin directory.

-a properties Writes the discovery results to files. If you do not use this option, the results are returned only to the terminal
window.

You can use any of the following discovery method options.

Command Purpose Comments

-m discover To run discovery for all plug-ins. Results are returned to the terminal
window.

-m discover -p jboss To run discovery for one plug-in, (in this case,
JBoss).

Results are returned to the terminal
window.

-m discover -p jboss -a

properties

To run discovery for a plug-in (JBoss) and save
results to files.

Results are written to files, and to the
terminal window.

-m discover -a properties To run discovery for all plug-ins and save
results to files

Results are written to files, and to the
terminal window.

metric Method
You use the metric method to fetch the metric template and the metric value for each metric for objects
that are managed by the plug-in.

You can also use the method for the following:

n Metrics that are collected by default

n Metrics belonging to a specific metric category

n Metrics that are indicator metrics

n To return only the metric template, without the metric values, for the metrics

n Fetch metrics repeatedly for a specified number of times, and return the time that it took to perform
the fetch action for each metric.

Syntax for the metric Method When Using a Resource Properties File

The syntax for running the metric method using a properties file to supply resource configuration data is
as follows.

java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -m metric plugin-

properties/ResourceTypeDirectory/ResourceName.properties -a translate -Dmetric-collect=default -

Dmetric-indicator=true -Dmetric-cat=CATEGORY -Dmetric-iter=ITERATIONS

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 33

Argument Description

plugin-

properties/ResourceTypeDirectory/ResourceName.properties

The path to the file generated when the resource was
discovered using the properties action of the discover
method.

The properties file provides the values for:
n -p PluginName: the product portion of the plug-in

name.
n -t ResourceType: the object type name
n The value of the configuration options for the object

-a translate Causes metric templates, but not metric values, to be
returned.

If -a translate is not specified, both metric templates
and metric values are returned

You can also use one of the following arguments to limit the metrics that are returned. If you do not use
one of these arguments, all metrics are returned.

Argument Description

-Dmetric-collect=default This option limits the results to metrics that have the defaultOn attribute set to true.

-Dmetric-indicator=true This option limits the results to metrics that have the indicator attribute set to true

-Dmetric-cat=CATEGORY This option limits the results to metrics of a specific category.

The categories are AVAILABILITY, UTILIZATION, THROUGHPUT, and PERFORMANCE.

-Dmetric-iter=ITERATIONS This option causes the time (in milliseconds) to collect a metric repeatedly to be reported, rather
than the metric value..

Syntax for the metric Method that Specifies Configuration Data on Command Line

The syntax for running the metric method that supplies resource configuration data on the command line
data is as follows.

java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -m metric -p PluginName -t

ResourceType -a translate -Dmetric-collect=default -Dmetric-indicator=true -Dmetric-cat=CATEGORY -

Dmetric-iter=ITERATIONS -DOption=Value

Argument Description

-p PluginName Specifies the product portion of the plug-in name.

-t ResourceType Specifies the resource type name.

-a translate Causes metric templates, but not metric values, to be returned.

If -a translate is not specified, both metric templates and metric values are returned

Optionally, one of the following options is also specified, to limit the metrics that are returned. If you do not
specify one of these options, all metrics are returned.

Argument Description

-Dmetric-collect=default Limits the results to metrics that have the defaultOn option set to true.

-Dmetric-indicator=true Limits the results to metrics that have the indicator option set to true.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 34

Argument Description

-Dmetric-cat=CATEGORY Limits the results to metrics of a specific category. The categories that are available are
AVAILABILITY , UTILIZATION, THROUGHPUT, or PERFORMANCE.

-Dmetric-iter=ITERATIONS Causes the time, in milliseconds, to collect a metric repeatedly

-DOption=Value Specifies the value of a resource configuration option.

The command line must include a -DOption=Value for each resource configuration option.

Example Invocations

In the following examples, only the method invocation and command options are shown. The java -jar
AgentHome/bundles/AgentBundle/pdk/lib/dcs-tools-pdk-VERSION.jar portion of the command is
not shown.

Command Purpose Comments

-m metric -p jboss -t "JBoss 4.2" -m metric -
Djava.naming.provider.url=jnp://0.0.0.0:2099 -
Dserver.log_track.files=../../../logs/server.log -
Dprogram=/Applications/HQEE42GA/server-4.2.0-EE/hq-
engine/bin/run.sh

To fetch metrics for a
JBoss server.

Resource configuration data is
supplied on the command line

-m metric plugin-
properties/jboss-4.2/melba_HQ_jBoss_4.x.properties

To fetch metrics for
the jboss server
supplying the
configuration data
using a properties
file.

Resource configuration data is
supplied by a properties file.

Add -Dmetric-collect=default to the command line. To limit the results to
indicator metrics.

If you use this option, do not
use -Dmetric-cat=CATEGORY
or -Dmetric-
indicator=true .

Add -Dmetric-cat=CATEGORY to the command line, where CATEGORY is
AVAILABILITY, UTILIZATION, THROUGHPUT, or PERFORMANCE.

To limit the results to
metrics of a specific
category.

If you use this option, do not
use -Dmetric-
collect=default or -
Dmetric-indicator=true .

Add -Dmetric-indicator=true to the command line. To limit the results to
indicator metrics.

If you use this option, do not
use -Dmetric-
collect=default or -
Dmetric-cat=CATEGORY.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 35

Command Purpose Comments

Add -Dmetric-iter=ITERATIONS to the command line where
ITERATIONS is the number of times to run getValue for each metric .

To collect each
metric multiple times
and report how long
it took to do so (in
milliseconds),
instead reporting the
metric value.

You can use this option in
conjunction with one of the
following:
n -Dmetric-

collect=default

n -Dmetric-cat=CATEGORY

n -Dmetric-

indicator=true

Add -m metric plugin-
properties/jboss-4.2/melba_HQ_jBoss_4.x.properties -a

translate to the command line.

To fetch the metric
template, but not the
metrics, for the
JBoss server.

Example: Results Returned by the -metric Method default Action

This example is an excerpt from the results of running the default action of the metric method. Both metric
templates and metric values are returned.

Note Colons In metric templates appear as "%3A" in the results.

JBoss 4.2 Availability:

jboss.system:service=MainDeployer:StateString:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=

=>100.0%<=

JBoss 4.2 Active Thread Count:

jboss.system:type=ServerInfo:ActiveThreadCount:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=

=>125.0<=

JBoss 4.2 Active Thread Group Count:

jboss.system:type=ServerInfo:ActiveThreadGroupCount:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=

=>15.0<=

JBoss 4.2 JVM Free Memory:

jboss.system:type=ServerInfo:FreeMemory:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=

=>365.9 MB<=

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 36

Example: Results Returned by the metric Method translate Action

This example is an excerpt from the results of running the translate action of the metric method. Metric
templates are returned but metric values are not returned.

Note Colons In metric templates appear as "%3A" in the results.

JBoss 4.2 Availability:

jboss.system:service=MainDeployer:StateString:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=%java.naming.security.credentials%

JBoss 4.2 Active Thread Count:

jboss.system:type=ServerInfo:ActiveThreadCount:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=%java.naming.security.credentials%

JBoss 4.2 Active Thread Group Count:

jboss.system:type=ServerInfo:ActiveThreadGroupCount:java.naming.provider.url=jnp

%3A//0.0.0.0%3A2099,java.naming.security.principal=%java.naming.security.principal

%,java.naming.security.credentials=%java.naming.security.credentials%

JBoss 4.2 JVM Free Memory:

track Method
You use the track method to track log or configuration events.

Syntax

The syntax for the track method is as follows.

ava -jar /bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -p PluginName -t "ResourceType" -m

track -a TrackAction -Dserver.config_track.files=TrackFiles

Argument Description

PluginName Identifies the plug-in to run.

ResourceType Specifies a resource type managed by the plug-in.

TrackAction Specifies whether to track log events or configuration events.

Use with the log or track options.

Note You can use a properties file instead of specifying

-pPluginName

-t ResourceType

-Dserver.config_track.files=TrackFiles

Example: Various Usage Options

In the following examples, only the method invocation and command options are shown. The java -jar
AgentHome/bundles/AgentBundle/pdk/lib/dcs-tools-pdk-VERSION.jar portion of the command is
not shown.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 37

Command Purpose

-p apache -t "Apache 2.0" -m track -a config -

Dserver.config_track.files=/etc/httpd/httpd.conf

To track changes made to
the /etc/httpd/httpd.conf file for an "Apache 2.0"
server.

-p apache -t "Apache 2.0" -m track -a log -

Dserver.log_track.files=/var/log/httpd/error_log

To track log entries to /var/log/httpd/error_log
for an "Apache 2.0" server .

Add the required property definition to the command line, for example, -
Dserver.log_track.exclude=String

To implement other configurable tracking behaviors.
For example, to check the results of tracking log
messages that do or do not contain a particular string,
you must set the value of
server.log_track.exclude or
server.log_track.include on the command line.

generate Method
You use the generate method to generate documentation from the plug-in descriptor.

Syntax

The syntax for the generate method is as follows.

java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-VERSION.jar -p PluginName -m generate -a

GenerateAction

Argument Description

PluginName Identifies the plug-in to document.

If not specified, the action is applied to all plug-ins.

GenerateAction Specifies a type of document to generate.

Available options are:
n metrics-wiki Writes a Confluence Wiki-formatted summary of supported metrics to a file.
n metrics-xml Outputs an XML-formatted summary of supported metrics for an object type to stdout.
n metrics-txt Outputs a text-formatted summary of supported metrics for an object type to stdout.
n help

Outputs the contents of the <help> element for each object type in the plug-in descriptors to HTML files in
the ./plugin-help directory.

TrackAction Specifies whether to track log events or configuration events.

Use with the log or track options.

Example: Various Usage Options

In the following examples, only the method invocation and command options are shown. The java -jar
AgentHome/bundles/AgentBundle/pdk/lib/dcs-tools-pdk-VERSION.jar portion of the command is
not shown.

Command Purpose

-m generate -a metrics-wiki To document metrics in Confluence Wiki format for all object types in all plug-ins.

-m generate -a metrics-txt To document metrics in text format for all object types in all plug-ins.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 38

Command Purpose

-m generate -a metrics-xml To document metrics in XML format for all object types in all plug-ins.

-m generate -a help To generate a help page for all object types in all plug-ins.

Append -p jboss to the command line. To limit results to the object types managed by a single plug-in, in this example, JBoss.

Running Protocol Checks from the Command Line
In addition to running a plug-in from the command line to test or document the plug-in, you can use the
command line option to quickly retrieve metrics on-demand.

For example, you can run the netservices plug-in from the command line to check the availability of a
variety of network service types.

To monitor an object of one of the types listed below on an on-going basis, you configure it as a platform
service object on the required platform. The Endpoint Operations Management agent performs remote
availability checks and metric collection.

To enable monitoring, you supply object configuration data, at a minimum, the hostname of the service
object.

To run the plug-in from the command line, you must supply the required configuration data on the
command line.

The netservices plug-in can monitor remote objects of the following types.

n HTTP

n POP3

n IMAP

n SMTP

n FTP

n LDAP

n DNS

n SSH

n NTP

n DHCP

n SNMP

n RPC

n InetAddress Ping

n TCP Socket

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 39

Example: Run the netservices Plug-in metric Method for a Remote LDAP
Server
You use the following command to run the netservices plug-in metric method for a remote LDAP server.

The value of each configuration option for the LDAP service object is supplied using a -D argument.

java -jar bundles/agent-VERSION/pdk/lib/dcs-tools-pdk-shared-VERSION.jar -m metric -p netservices

-t LDAP -Dplugins.include=netservices -Dhostname=192.168.1.1 -Dssl=false -Dport=389

-DbaseDN=dc=foobar,dc=co,dc=nz -DbindDN=cn=root,c=foobar,dc=co,dc=nz

-DbindPW=changeme -Dfilter=uidNumber

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 40

Using Auto-Discovery Support
Classes in Plug-ins 2
You can use the vRealize Operations Manager auto-discovery functionality in a custom plug-in. As most
platform types are discovered by the system plug-in, custom plug-ins discover server and service
resource types.

Auto-Discovery Implementation
The auto-discovery class performs the discovery process. For many resource types, you can reference
one of the vRealize Operations Manager built-in auto-discovery classes. If necessary, you can write a
custom auto-discovery class that extends a vRealize Operations Manager auto-discovery class. Most of
the vRealize Operations Manager auto-discovery implementations discover two levels of resources -
servers, and the services that run in them, so typically you only specify a single implementation in the
descriptor.

Parameters Required by the Implementation
In addition to specifying the auto-discovery class, the plug-in descriptor must define the parameters that
the class requires.

This chapter includes the following topics:
n Auto-Discovery Classes

n Auto-Discovery Interfaces

n Specifying Auto-Discovery Implementation for a Resource Type

n Measurement Plug-ins

Auto-Discovery Classes
Auto-discovery rules for a resource type are defined in the XML descriptor of the plug-in that manages the
type.

VMware, Inc. 41

Auto-Discovery Class Hierarchy
VMware vRealize Operations Manager auto-discovery class is as follows.

org.hyperic.hq.product.GenericPlugin

 org.hyperic.hq.product.ServerDetector

 org.hyperic.hq.product.PlatformServiceDetector

 org.hyperic.hq.product.DaemonDetector

 org.hyperic.hq.product.MxServerDetector

 org.hyperic.hq.product.SunMxServerDetector

 org.hyperic.hq.product.SNMPDetector

Overview
The table below describes each of the classes in the auto-discovery class hierarchy.

Table 2‑1. Auto-Discovery Classes

Class Description When to Use

ServerDetector Abstract class.

ServerDetector is the base auto-
discovery class.

ServerDetector is an abstract class and
must be inherited, rather than used
directly. It may be extended by a custom
auto-discovery class.

PlatformServiceDetector Abstract class.

Intended for use by platform types with
service types, but no server types.

DaemonDetector Discovers server types via a Sigar query
of system process table.

MxServerDetector Discovers JMX server types via a Sigar
query of system process table. Discovers
JMX services by MBean query.

SunMxServerDetector Detector for Sun 1.5+ JVMs with remote
JMX enabled. Note, JVM resource must
be explicitly configured.

SNMPDetector Discovers SNMP server types via a
Sigar query of system process table.
Discovers SNMP services view SNMP
request.

Auto-Discovery Interfaces
The built-in auto-discovery classes in VMware vRealize Operations Manager each implement one or
more interfaces.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 42

The interfaces that are implemented are listed below.

org.hyperic.hq.produ

ct.AutoServerDetecto

r

This interface is used by the default scan, which discovers servers by
scanning the process table or Windows registry.

org.hyperic.hq.produ

ct.FileServerDetecto

r

This interface is used by the file system scan. Plug-ins specify file patterns
to match in etc/hq-server-sigs.properties.

When a file or directory matches one of these patterns, the method is
invoked. The plug-in uses the matched file or directory as a hint to find
server installations.

org.hyperic.hq.produ

ct.RuntimeDiscoverer
This interface is used by the run-time scan. This differs from the default and
filesystem scan, which do not necessarily require a server to be running
before it can be detected. Classes that implement the RuntimeDiscoverer
interface communicate directly with a running target server to discover
resources.

Specifying Auto-Discovery Implementation for a Resource
Type
You specify the class that performs auto-discovery for a resource type in a <plugin> element of type
autoinventory.

The following is an example of an auto-discovery Implementation for a resource type.

<server name="Java Server Name" version ="version #">

 ...

 <plugin type="autoinventory" class="org.hyperic.hq.product.jmx.MxServerDetector"/>

 ...

</server>

Supplying Parameters for Auto-Discovery Implementation
All auto-discovery implementations discover server types by scanning the process table or Windows
registry for processes that match a Sigar process query.

You specify the process query in an option element named process.query (inside a <config>
element) in the <server> element for a server type. Data that you define in an option element appears
as part of a resource, and can be edited as required.

Data defined in a property element cannot be edited for a resource in the
VMware vRealize Operations Manager user interface. The parameters that are required to discover
services vary by plug-in implementation. Discovery of JMX services requires ObjectNames, discovery of
SNMP services requires an OID.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 43

Measurement Plug-ins
A measurement plug-in is the part of a resource plug-in that implements metric collection. It can identify a
resource instance and collect metrics for it.

A custom plug-in that leverages the vRealize Operations Manager base measurement classes consists of
only the plug-in XML descriptor. For example, most custom JMX measurement plug-ins use the
vRealize Operations Manager JMX measurement classes. To write a custom JMX plug-in you typically
just define the resources and the required metrics in an XML file, which is the complete plug-in.

Writing the XML Descriptor
Each plug-in requires an XML descriptor that specifies the type of plug-in, the resources to look for and
the metrics to collect from them. The topic describes the major elements that you must include in that
descriptor file.

Measurement Support Classes
Here are the vRealize Operations Manager classes for metric collection.

org.hyperic.hq.produ

ct.MeasurementPlugin

This is the vRealize Operations Manager base measurement class. The
getValue() method is called when a plug-in is asked for a metric value.
This class is extended by the following classes, each of which specifies a
getValue() method for a specific type of metric collection.

n JMX

n JDBC

n Sigar

n ...

org.hyperic.hq.produ

ct.JDBCMeasurementPl

ugin

Obtains database server and database metrics using JDBC. Measurement
classes in Hyperic plug-ins that monitor database servers extend this class.
Such plug-ins include:

n Mysql

n PostgreSQL

n Oracle

n Sybase

org.hyperic.hq.produ

ct.jmx.MxMeasurement

Plugin

Obtains MBean attribute values. Measurement classes in Hyperic plug-ins
that monitor application servers extend this class. Plug-ins include:

n JBoss

n WebLogic

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 44

n WebSphere

n Tomcat

n Resin

org.hyperic.hq.produ

ct.SigarMeasurementP

lugin

Uses SIGAR API to obtain system and process data. The
vRealize Operations Manager system plug-in uses this class to monitor
system and process information for operating system platform types such
as Linux, Win32, and so on.

org.hyperic.hq.produ

ct.SNMPMeasurementPl

ugin

Obtains metrics from SNMP-enabled resources. Measurement classes in
vRealize Operations Manager plug-ins that use this class include Apache.

org.hyperic.hq.produ

ct.Win32MeasurementP

lugin

Collects Windows Perflib data.

Specifying the Measurement Plug-in in the Plug-in Descriptor
You identify the measurement class for a resource type in the plug-in descriptor, in a <plugin> element in
the resource element that defines the resource type.

The resource element could be a <platform>, <server>, or <service> element. For example, a plug-in
that uses org.hyperic.hq.product.MeasurementPlugin to collect metrics for a server type resource
includes a <plugin> element like the one in the following code snippet.

<server...

 ...

 <plugin type="measurement" class="org.hyperic.hq.product.MeasurementPlugin"/>

 ...

</server>

Defining Measurements Using the metric Tag
A measurement plug-in collects metrics. In the plug-in descriptor, you define a <metric> element for
each metric to be collected for an object type.

You must always collect the availability metric.

The availability metric indicates whether an object is up or down.

A metrics-gathering plug-in must determine availability for every object that it monitors. A single plug-in
gathers availability for multiple objects. If availability is not gathered for an object, the object is determined
to be unavailable.

A plug-in sets the value of availability to 100 if the object is up, and 0 if it is down. These values are
displayed in the user interface as available or unavailable.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 45

Verifying the existence of an object's process is a common technique for determining its availability.
However, the method a plug-in uses to determine availability can vary depending on the object type and a
plug-in developer's judgment. There might be alternative techniques for determining availability of an
object. For example, a plug-in might determine the availability of a Web server based on whether its
process is up, its port is listening, it is responsive to a request, or by some combination of these
conditions.

The following table describes each metric attribute, most of which, are intended for use by the server to
control display of the metric data.

Table 2‑2. metric Tag Attributes

Metric Attribute Description Required Yes/No Possible Values

name The name that appears for
the metric in the
vRealize Operations Manager
user interface.

Yes

alias The abbreviated name of the
metric, displayed in the plug-
in's output (name-value
pairs).

If not specified, alias
defaults to the value of name,
with any white space and any
non-alphanumeric characters
removed.

No In the case of a JMX metric,
alias exactly matches the name
of the MBean attribute that
supplies the metric value.

category The category of metric. In the
vRealize Operations Manager
user interface, a user can
group metrics by category on
the Metric Data tab for the
object.

No n AVAILABILITY

This is the default category
for a metric whose name
attribute is "Availability".

n THROUGHPUT
n PERFORMANCE
n UTILIZATION

This is the default category
for a metric, except for a
metric whose name is
"Availability".

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 46

Table 2‑2. metric Tag Attributes (Continued)

Metric Attribute Description Required Yes/No Possible Values

units The units of measurement for
the metric, which affects how
metric values are displayed
and labelled in the
vRealize Operations Manager
user interface

No None

Is not formatted.

Uses the following
abbreviations:
n percentage
n B: Bytes
n KB: Kilobytes
n MB: Megabytes
n GB: Gigabytes
n TB: Terabytes
n epoch-millis: Time since

January 1, 1970 in
milliseconds

n epoch-seconds: Time since
January 1, 1970 in
seconds

n ns: Nanoseconds
n mu: Microseconds
n ms: Milliseconds
n sec: Seconds

If the name attribute is
Availability, defaults to
percentage, otherwise defaults
to none.

indicator Whether the metric is an
indicator metric in
vRealize Operations
Manager. Indicator metrics
are marked as KPI in the
vRealize Operations Manager
user interface.

No n true
n false

template Expresses a request for a
specific metric, for a specific
object, in a format that the
Endpoint Operations
Management agent
recognizes. It identifies the
object instance, a specific
metric, and where to obtain
the metric value. A metric
template takes the form
Domain:Properties:Metric

:Connection

No The content of each segment
of the metric template depends
on how the metric is obtained:
from an MBean server, SIGAR,
a measurement class, through
SNMP, and so on.

defaultOn When true, this
measurement is scheduled by
default.

No If indicator is true defaults to
true, otherwise defaults to
false.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 47

Example: Simple metric Tag

<metric name="Availability"

 category="AVAILABILITY"

 units="percentage"

 indicator="true"/>

Example: Complex metric Tag

<metric name="Availability"

 alias="Availability"

 template="sigar:Type=ProcState,Arg=%process.query%:State"

 category="AVAILABILITY"

 indicator="true"

 units="percentage"/>

Using Templates to Collect Metric Data
Metric templates enable plug-ins to mix and match sources for the data they collect.

The measurement template uses an extended form of a JMX ObjectName,
domain:properties:attribute:connection-properties.

boss.system:Type=ServerInfo:FreeMemory:naming.url=%naming.url%

where

domain jboss.system

properties Type=ServerInfo

attribute FreeMemory

connection-properties naming.url=%naming.url%

This is the extension to the JMX ObjectName format. Arbitrary properties are generally used to connect to
the managed server. In this example, JBoss JMX requires a JNP URL (specified here as a variable,
indicated by "%": %naming.url%). The variable is given a value by the
MeasurementPlugin.translate method, using the inventory property value for this server instance.

Using Support Classes to Simplify Metric Collection
In a template, the domain can be used to invoke an HQ-provided support class for handling common
sources of metrics, such as Process Information, scripts, SQL Queries, and Network Services. You can
see this use of templates in many of the plug-in examples.

A template must be written in a way that the underlying support class can recognize, specifically, the
order and kinds of values being passed to it.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 48

In script plug-ins, the exec domain, in the script support class, is common. It is invoked using the
arguments file (the file to execute) and possibly timeout (to make the timeout value explicit, for easier
troubleshooting, instead of using the default value) and exec (to specify permissions). For example:

template=exec:timeout=10,file=pdk/work/scripts/sendmail/hq-sendmail-stat,exec=sudo:${alias}

There is also a large class of "protocol checkers" that you can use in a template for easy collection of
protocol metrics, for example, for HTTP or SMTP. You can use a protocol checker for any of the platform
services that are defined in the Endpoint Operations Management agent.

Setting a Plug-in to Auto-discover Resources
The Endpoint Operations Management agent has already defined an autoinventory plug-in for several
collection methods. Generally, you only need to call it in your own plug-in.

Auto-discovering a Server Resource
You can specify auto-discovery of a server by adding the following to line to a <server> tag.

<plugin type="autoinventory" class="org.hyperic.hq.product.jmx.MxServerDetector"/>

The class name varies by type of plug-in. The class in the code snippet is for a JMX plug-in. For a script
plug-in you use the following.

<plugin type="autoinventory" class="org.hyperic.hq.product.DaemonDetector"/>

Auto-discovering Services Resources
You can specify the auto-discovery of a services running on the server by adding another line so that the
plug-in recognizes that the server is hosting services that it must discover.

<property name="HAS_BUILTIN_SERVICES" value="true"/>

For each hosted service enumerated in the plug-in, within the <service> tag, you again call the
autoinventory plug-in, but without a class argument.

<plugin type="autoinventory"/>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 49

Working with Plug-in
Descriptors 3
A plug-in descriptor is an XML file that defines what a plug-in does and how. It defines the object types it
manages and, for each object type, specifies the management functions it performs, the resource data it
requires and discovers, and the metrics it returns.

Every plug-in has a descriptor file. If a plug-in uses Endpoint Operations Management plug-in support
classes or a script to perform management functions, the descriptor is the component to develop and
deploy. The descriptor for a plug-in that uses custom management classes is packaged with the classes
in a JAR for deployment.

This chapter includes the following topics:

n Hierarchy of Managed Object Types

n Management Functions and Classes for Object Types

n Inventory and Configuration Data for Object Types

n Metrics to Collect for Each Object Type

n Structure of a Plug-in Descriptor

n Functionality of Plug-in Descriptor Elements

Hierarchy of Managed Object Types
A plug-in descriptor defines each object type that the plug-in manages.

In some cases there is only a single type, but more typically the descriptor defines a hierarchy of types,
for example a server object (for example, Tomcat 6.0) and its service objects (for example, Vhosts).

A plug-in can manage multiple object type hierarchies. The descriptor for such plug-ins defines an object
hierarchy for each version.

Although a plug-in can manage a platform object and one or more levels of dependent objects, in practice
virtually all platform-level objects are managed by a single Endpoint Operations Management system-
plug-in.jar plug-in. The system plug-in discovers and manages all supported OS platform objects and
platform services objects, such as the network interface, CPU, and file server mount service objects for
each platform object.

The only other Endpoint Operations Management plug-ins that manage objects that are determined by
Endpoint Operations Management to be platform objects are those that manage virtual or network hosts.

VMware, Inc. 50

Management Functions and Classes for Object Types
A plug-in can perform one or more management function for each object type that it manages.

For example, the Tomcat plug-in enables autodiscovery, metric collection, log tracking, control operations
for Tomcat 5.5 and 6.0 servers, and one or more management functions for Tomcat connectors and Web
applications.

For each management function, the descriptor specifies the class, support libraries, or external JAR that a
plug-in uses to perform that function. For example, the Tomcat plugin uses
org.hyperic.hq.product.jmx.MxServerDetector to discover Tomcat instances.

The available management functions include the following.

Plug-in Management Function Description

Discover resources and resource
data

Discovers running instances of and object type and collects object data. For example, an
Apache server's build date and the path to its executable.

Obtain metrics Measures or collects metrics that reflect the availability, throughput, and utilization of an
object instance.

Monitor log files Monitors log files for messages that match specified filter criteria, such as severity level or
text that the message includes (or does not include).

Monitor configuration files Monitors specific files for changes.

Inventory and Configuration Data for Object Types
For each object type that the plug-in manages, the descriptor defines the resource data that the plug-in
uses, including data that the plug-in requires so that it can discover a resource, such as the address of an
MBean server, or object attributes that the plug-in discovers.

Metrics to Collect for Each Object Type
The plug-in descriptor specifies each metric that the plug-in obtains for each object type it manages.

For example, the Tomcat plug-in obtains "Availability", "Current Thread Count" and "Current Threads
Busy" metrics for a "Thread Pools" service. The rules for obtaining a metric are defined in a structured
expression referred to as a metric template. A metric template identifies the target metric by the name the
relevant measurement class returns it, and provides the data the class requires to obtain the metric (e.g.,
the resource's JMX ObjectName).

Structure of a Plug-in Descriptor
The structure of a plug-in descriptor is the same as the hierarchy of the object types that the plug-in
manages, expressed in terms of the inventory model.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 51

A plug-in descriptor contains a <platform> , <server> , or <service> object element for each object
type that must be managed. The object element hierarchy in the descriptor must reflect relationships
between the managed object types. For example, a <server> element for a Tomcat type contains (is the
parent of) the <service> element for the Vhost type.

In the following table, the left column illustrates all of the object element relationships that are valid in a
plug-in descriptor. Elements that map to object types are shown in bold. No element attributes are shown,
and some lower level elements are excluded. The child elements below each object type element are
used to define the object data, plug-in functions, and metrics for that object type. The right column
illustrates the descriptor structures for resource hierarchies of varying depth.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 52

Supported Element Relationships Element Structures for Various Object Hierarchies

<plugin>
 <filter>
 <property>
 <config>
 <option>
 <properties>
 <help>
 <metrics>
 <script>
 <classpath>
 <platform>
 <filter>
 <property>
 <config>
 <properties>
 <plugin>
 <help>
 <metrics>
 <metric>
 <actions>
 <classpath>
 <script>
 <server>
 <filter>
 <property>
 <config>
 <option>
 <properties>
 <plugin>
 <help>
 <metrics>
 <metric>
 <actions>
 <scan>
 <service>
 <filter>
 <property>
 <config>
 <option>
 <properties>
 <plugin>
 <help>
 <metrics>
 <metric>
 <actions>
 <server>
 <service>
 <service>

.....

Note Server Object - Service Object

Most Endpoint Operations Management plug-ins manage a server object and the service
objects that it contains. The <server> element is the root of the plug-in and contains a
<service> element for each of the service objects that the plug-in manages. The descriptor
for a plug-in that manages multiple versions of a server object, for example the plug-in for
Tomcat 5.5 and 6.0, defines a <server> - <service> hierarchy for each.

<plugin> (root)
 <server>
 <service>
 <server>
 <service>

Note Platform Object - Platform Service Object

Non-typical

The system plug-in manages all of the Endpoint Operations Management supported OS
platform objects, and the service objects that run on each platform. The plug-in descriptor
defines a <platform> - <service> hierarchy for each OS platform object.

<plugin>
 <platform>
 <service>

 <platform>
 <service>

Note Platform Object - Server Object - Service Object

Non-typical

This structure is valid but uncommon. The only Endpoint Operations Management plug-ins
that manage platform-server-service objects are plug-ins that manage virtual platform
objects.

<plugin>
 <platform>
 <server>
 <service>

Note Platform Service Object

If a plug-in manages only a platform service object, the <service> element appears in the
root of the plug-in.

<plugin>
 <service>

Functionality of Plug-in Descriptor Elements
The hq-plugin.xml defines the plugin. It defines what the plug-in does and how, including which metrics to
collect, the units of measurement, the type of metric, and other attributes that characterize metric nature
and behavior.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 53

In addition, the xml defines one or more management functions and the class or script that runs each of
them. It also defines the resource data that the plug-in uses, and related user interface behaviors
including whether and where resource properties are displayed in the user interface, defaults and
permissible values for configurable data, and so on.

You can use the following table to determine the elements that you can define for each object that a plug-
in manages.

Element Description and Usage

Configurable resource
data
n <config>

n <option>

<config> is a mandatory container element for <option> elements. A named <config> element is a
reusable building block that can be included by reference in other <config> elements. This is useful
when you define a group of options that apply to multiple managed objects in the object plug-in. You
can designate a <config> element as global, in which case <config> elements in other plug-in
descriptors can also reference it.

<option> specifies a resource attribute with a value that must be supplied by the user. It can be
supplied in the descriptor or by a plug-in class, but it must be editable. You can define the permissible
values for a selector list, whether they are optional or mandatory, and so on.

Non-configurable resource
data
n <properties>

n <property>

<properties> is a container element for one or more <property> elements.

<property> specifies a non-configurable resource attribute. Its value might be discovered (for
example RAM, or CPU speed), returned by a plug-in class, or defined in the descriptor.

Resource data defined as a <property> cannot be entered or edited in the user interface.

Management functions for
a resource type
n <plugin>

n <actions>

<plugin> specifies a management function (auto-discovery, measurement, control, log tracking, and
so on) for a resource type, and the Java class that performs that function.

Each management function for a resource type is specified in a separate <plugin> element.

<actions> specifies a list of control operations, supported by the resource type, that the plugin can
perform. The <actions> element is required as a sibling for a control-type <plugin> element.

Metrics for a resource type
n <metrics>

n <metric>

<metrics> is container for one or more <metric> elements. A named <metrics> element in the root
of the plug-in is a reusable building block that can be included by reference in <metrics> elements in
multiple resource elements within the descriptor. This is useful when you define a set of metrics that
apply to multiple object types that are managed by the plug-in.<metric> specifies a measurement that
the plug-in obtains for an object type. The attributes in the <metric> element define the type of metric
(availability, throughput, utilization), units of measure, whether the metric is an indicator, and so on.

Metrics for use within the
descriptor
n filter

The filter element defines a name and value pair variable that you can use in the descriptor.
filter is meaningful only within the descriptor.

The filter element make a descriptor easier to write, understand, debug, and maintain. It makes it
easier to define the template for each metric.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 54

Plug-In Support Classes 4
There are a number of Endpoint Operations Management plug-in support classes for use when writing
your plug-ins.

Use the following classes, as required.

n Auto-Discovery Support Classes

These support classes are relevant to Endpoint Operations Management auto-discovery functions.

n Measurement Support Classes

There are a number of Endpoint Operations Management measurement support classes for use
when writing your plug-ins.

n ProductPlugin Class

The ProductPlugin class provides the deployment entry point on both the
vRealize Operations Manager server and Endpoint Operations Management agent. It defines the
object types and the plug-in implementations for measurement, control, and autoinventory.

n ServerResource Class

The ServerResource class stores resource data for a newly discovered server objects during auto-
discovery. ServerResource contains the data that is reported for a server object in the auto-
inventory report that the Endpoint Operations Management agent sends to
vRealize Operations Manager.

n ServiceResource Class

The ServiceResource class is used to store information for newly discovered services during the
autodiscovery methods. This class contains everything that is included in a runtime autoinventory
report.

n ConfigResponse Class

The ConfigResponse class is used throughout Endpoint Operations Management source code to
store and transfer configuration data. From an end user perspective this class acts as a key/value
storage. Usually you use this class to add configuration properties to new resources created during
auto discovery methods.

Auto-Discovery Support Classes
These support classes are relevant to Endpoint Operations Management auto-discovery functions.

VMware, Inc. 55

n DaemonDetector Class

The DaemonDetector class auto-discovers a single process and adds the related PTQL query to the
resource configuration.

n FileServerDetector Class

The FileServerDetector interface is used to discover server resources based on a file system
scan. This interface is used when a user manually invokes new autodiscovery on platform object
level.

n MxServerDetector Class

The MxServerDetector class auto-discovers JMX servers.

n RegistryServerDetector Class

The RegistryServerDetector interface is used to discover server objects that are found by
scanning the Windows registry.

n ServerDetector Class

The ServerDetector class is the base implementation for autodiscovery. ServerDetector is an
abstract class, so cannot be directly used for auto-discovery. An auto-discovery implementation
must inherit ServerDetector.

n SNMPDectector Class

You can use the SNMPDetector class in XML-only plug-ins that extend the Network Device plug-in,
or SNMP-enabled servers, such as Squid.

DaemonDetector Class
The DaemonDetector class auto-discovers a single process and adds the related PTQL query to the
resource configuration.

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.GenericPlugin

 [org.hyperic.hq.product.ServerDetector|ServerDetector]

 org.hyperic.hq.product.DaemonDetector

Resource Properties
This table describes the resource data that you can define in the plug-in descriptor for a plug-in that uses
DaemonDetector.

Property Description Usage

PROC_QUERY Initiates a PTQL query to identify the server object. Mandatory

AUTOINVENTORY_NAME Formats the auto-inventory name as defined by the plug-in. Optional

INSTALLPATH_MATCH Returns true if the installation path matches the specified substring. Optional

INSTALLPATH_NOMATCH Returns false if the installation path matches the specified substring. Optional

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 56

Property Description Usage

INVENTORY_ID The installation path parameter. Optional

PROC_QUERY The default PTQL query to scan for.

HAS_BUILTIN_SERVICES Scans for built-in service objects. The default is false. Optional

VERSION_FILE Returns true if the specified file exists in the installation path. Optional

Example: Usage
This example defines a new server object that is auto-discovered using a PTQL process query.

<server name="My Single Process Server">

 <property name="PROC_QUERY" value="State.Name.eq=myprocess"/>

 <config>

 <option

 default="State.Name.eq=myprocess"

 name="process.query"

 description="Process Query for singleprocess">

 </option>

 </config>

 <plugin type="autoinventory" class="org.hyperic.hq.product.DaemonDetector" />

 ...

</server>

FileServerDetector Class
The FileServerDetector interface is used to discover server resources based on a file system scan.
This interface is used when a user manually invokes new autodiscovery on platform object level.

A background scan receives hints from the <scan> tag to match the correct file paths. Based on these
results, this interface is called with every matched result.

Interface Hierarchy
org.hyperic.hq.product.FileServerDetector

Interface References

package org.hyperic.hq.product;

import java.util.List;

import org.hyperic.util.config.ConfigResponse;

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 57

Implementing Methods
This interface implements the following methods.

getServerResources(C

onfigResponse,String

):List

public List getServerResources(ConfigResponse platformConfig, String

path)

throws PluginException;

This method is called if the associated autodiscovery implementation is
implementing this interface. The method is called with every successfully
matched result.

The method must return a list of ServerResource objects. See
ServerResource Class for more information.

Parameters: platformConfig Configuration for the underlying platform object.

path Matched path.

Returns: A list of ServerResource objects.

Exceptions: org.hyperic.hq.product.PluginException

Example: Usage

package hq.example;

import java.util.ArrayList;

import java.util.List;

import org.hyperic.hq.product.FileServerDetector;

import org.hyperic.hq.product.PluginException;

import org.hyperic.hq.product.ServerDetector;

import org.hyperic.hq.product.ServerResource;

import org.hyperic.util.config.ConfigResponse;

public class CustomFileScanDetector

extends ServerDetector

implements FileServerDetector {

 /** Base PTQL query to find matching processes by full path */

 private static final String PTQL_QUERY = "Exe.Name.ct=";

 public List getServerResources(ConfigResponse platformConfig, String path)

 throws PluginException {

 List servers = new ArrayList();

 ConfigResponse productConfig = new ConfigResponse();

 // alter query to find discovered process

 // this can be later altered through hq gui.

 productConfig.setValue("process.query", PTQL_QUERY + path);

 ServerResource server = createServerResource(path);

 setProductConfig(server, productConfig);

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 58

 server.setMeasurementConfig();

 servers.add(server);

 return servers;

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<plugin

 name="filescan-example"

 package="hq.example">

 <metrics

 name="basic-process-metrics">

 <metric

 indicator="true"

 units="percentage"

 name="Availability"

 collectionType="dynamic"

 template="sigar:Type=ProcState,Arg=%process.query%:State"

 category="AVAILABILITY">

 </metric>

 <metric

 indicator="true"

 units="B"

 name="Process Virtual Memory Size"

 collectionType="dynamic"

 template="sigar:Type=ProcMem,Arg=%process.query%:Size"

 category="UTILIZATION">

 </metric>

 <metric

 units="B"

 name="Process Resident Memory Size"

 template="sigar:Type=ProcMem,Arg=%process.query%:Resident">

 </metric>

 <metric

 name="Process Page Faults"

 collectionType="trendsup"

 template="sigar:Type=ProcMem,Arg=%process.query%:PageFaults">

 </metric>

 <metric

 units="ms"

 name="Process Cpu System Time"

 collectionType="trendsup"

 template="sigar:Type=ProcCpu,Arg=%process.query%:Sys">

 </metric>

 <metric

 units="ms"

 name="Process Cpu User Time"

 collectionType="trendsup"

 template="sigar:Type=ProcCpu,Arg=%process.query%:User">

 </metric>

 <metric

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 59

 units="ms"

 name="Process Cpu Total Time"

 collectionType="trendsup"

 template="sigar:Type=ProcCpu,Arg=%process.query%:Total">

 </metric>

 <metric

 indicator="true"

 units="percentage"

 name="Process Cpu Usage"

 template="sigar:Type=ProcCpu,Arg=%process.query%:Percent">

 </metric>

 <metric

 units="epoch-millis"

 name="Process Start Time"

 collectionType="static"

 template="sigar:Type=ProcTime,Arg=%process.query%:StartTime"

 category="AVAILABILITY">

 </metric>

 <metric

 name="Process Open File Descriptors"

 template="sigar:Type=ProcFd,Arg=%process.query%:Total">

 </metric>

 <metric

 name="Process Threads"

 template="sigar:Type=ProcState,Arg=%process.query%:Threads">

 </metric>

 </metrics>

 <server name="filescanserver">

 <plugin

 type="autoinventory"

 class="CustomFileScanDetector">

 </plugin>

 <plugin

 type="measurement"

 class="org.hyperic.hq.product.MeasurementPlugin">

 </plugin>

 <scan>

 <include name="/**/firefox.exe"/>

 </scan>

 <config>

 <option

 default="Exe.Name.eq=svc"

 name="process.query"

 description="Process Query for customserver">

 </option>

 </config>

 <metrics

 include="basic-process-metrics">

 </metrics>

 </server>

</plugin>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 60

Standalone Invocation
The standalone plug-in invocation differs slightly from how the FileServerDetector and
AutoServerDetector classes are executed compared to a real agent. If a real agent is going to use the
FileServerDetector class, it executes that before the AutoServerDetector class. This standalone
invocation executes either one of these, but not both.

To test the FileServerDetector interface verify that at least one of the following parameters exist.

Property Key Description Values Defaults

fileScan.scanDirs The directories to scan. A list of comma-separated
directories.

Windows: "C:\"

Unix: "/usr" , "/opt"

fileScan.excludeDirs The directories to
exclude from a scan.

A list of comma-separated
directories.

Windows: "\WINNT" , "\TEMP", "\TMP",
"\Documents and Settings",
"\Recycled"

Linux: "/usr/doc", "/usr/dict",
"/usr/lib", "/usr/libexec",
"/usr/man", "/usr/tmp",
"/usr/include", "/usr/share",
"/usr/src", "/usr/local/include",
"/usr/local/share",
"/usr/local/src"

fileScan.fsTypes The file system types
to scan.

One of the following:
n All disks

n Local disks

n Network-mounted

disks

All disks

fileScan.depth The depth of directory
levels to scan.

1, or higher.

Use -1 to indicate unlimited
depth.

6

fileScan.followSymlinks Whether symlinks are
followed.

true or false false

A standalone invocation is implemented using -m discover and -p <server object name> options.

java -jar dcs-tools-pdk.jar

-Dplugins.include=filescan-example

-Dlog=info

-DfileScan.scanDirs="C:\\Program Files (x86)"

-DfileScan.excludeDirs="\\WINNT,\\TEMP,\\TMP,\\Documents and Settings,\\Recycled"

-DfileScan.fsTypes="Local disks"

-DfileScan.depth=2

-DfileScan.followSymlinks=false

-m discover

-p filescanserver

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 61

MxServerDetector Class
The MxServerDetector class auto-discovers JMX servers.

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.GenericPlugin

 [org.hyperic.hq.product.ServerDetector|ServerDetector]

 org.hyperic.hq.product.MxServerDetector

Resource Properties
This table describes the resource data that you can define in the plug-in descriptor for a plug-in that uses
MxServerDetector.

Property Description Usage

DEFAULT_CONFIG_FILE The default configuration file to track.

PROC_MAIN_CLASS

PROC_HOME_PROPERTY

PROC_HOME_ENV

Example: Usage
jonas-plugin.xml

...

<plugin type="autoinventory"

 class="org.hyperic.hq.product.jmx.MxServerDetector"/>

...

RegistryServerDetector Class
The RegistryServerDetector interface is used to discover server objects that are found by scanning
the Windows registry.

Scan criteria are specified in a <scan> element in the plug-in descriptor.

The following element attributes define where to search in the registry and what registry key to look for.

n registry - This attribute specifies a registry path in the Windows registry. Subkeys of the specified
path are scanned. You can designate several search roots by appending the path with an asterisk.

n include - This attribute specifies the name of a key in the Windows registry. A <scan> element can
contain multiple include attributes. The registry scan does not support wildcards in the registry key
name.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 62

The following <scan> element results in a scan for a subkey of "SOFTWARE\Microsoft\Internet Explorer.

<scan registry="SOFTWARE\Microsoft\Internet Explorer">

 <include name="AppName"/>

</scan>

RegistryServerDetector is called for each resource in the Windows registry that matches the scan
criteria.

You can extend the search to multiple root keys by ending the key name with "". For example,
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\MySQL" only searches for subkeys
of ...\Uninstall that start with MySQL.

Interface Hierarchy
org.hyperic.hq.product.RegistryServerDetector

Interface References

package org.hyperic.hq.product;

import java.util.List;

import org.hyperic.sigar.win32.RegistryKey;

import org.hyperic.util.config.ConfigResponse;

Implementing Methods
This interface implements the following methods.

getServerResources(C

onfigResponse,String

):List

public List getServerResources(ConfigResponse platformConfig, String

path, RegistryKey current)

throws PluginException;

This method is called if the associated autodiscovery implementation is
implementing this interface.

Parameters: platformConfig Configuration for the underlying platform object.

path Value of the matched key.

current Current registry object.

Returns: A list of ServerResource objects.

Exceptions: org.hyperic.hq.product.PluginException

getRegistryScanKeys(

):List
public List getRegistryScanKeys();

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 63

This method returns a list of registry keys to scan. The ServerDetector
class contains default implementation for this function, which requests keys
from the plug-in descriptor file. The example XML content that is used in
this document results in the single list member
SOFTWARE\Microsoft\Internet Explorer.

A user can implement/overwrite this method to return a list of keys directly.

Returns: A list of registry keys.

Example: Usage

package hq.example;

import java.util.ArrayList;

import java.util.List;

import org.hyperic.hq.product.PluginException;

import org.hyperic.hq.product.RegistryServerDetector;

import org.hyperic.hq.product.ServerDetector;

import org.hyperic.hq.product.ServerResource;

import org.hyperic.sigar.win32.RegistryKey;

import org.hyperic.util.config.ConfigResponse;

public class CustomRegistryScanDetector

extends ServerDetector

implements RegistryServerDetector {

 /** Base PTQL query to find matching processes by full path */

 private static final String PTQL_QUERY = "State.Name.eq=iexplore";

 public List getServerResources(ConfigResponse platformConfig, String path, RegistryKey current)

 throws PluginException {

 List servers = new ArrayList();

 ConfigResponse productConfig = new ConfigResponse();

 productConfig.setValue("process.query", PTQL_QUERY);

 ServerResource server = createServerResource(path);

 setProductConfig(server, productConfig);

 server.setMeasurementConfig();

 servers.add(server);

 return servers;

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 64

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<plugin

 name="registryscan-example"

 package="hq.training">

 <metrics

 name="multi-process-metrics">

 <metric

 indicator="true"

 units="percentage"

 name="Availability"

 collectionType="dynamic"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Availability"

 category="AVAILABILITY">

 </metric>

 <metric

 units="none"

 name="Number of Processes"

 alias="NumProcesses"

 collectionType="dynamic"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Processes"

 category="UTILIZATION">

 </metric>

 <metric

 units="B"

 name="Memory Size"

 alias="MemSize"

 collectionType="dynamic"

 template="sigar:Type=MultiProcMem,Arg=%process.query%:Size"

 category="UTILIZATION">

 </metric>

 <metric

 units="B"

 name="Resident Memory Size"

 alias="ResidentMemSize"

 collectionType="dynamic"

 template="sigar:Type=MultiProcMem,Arg=%process.query%:Resident"

 category="UTILIZATION">

 </metric>

 <metric

 units="ms"

 name="Cpu System Time"

 alias="SystemTime"

 collectionType="trendsup"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Sys"

 category="UTILIZATION">

 </metric>

 <metric

 units="ms"

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 65

 name="Cpu User Time"

 alias="UserTime"

 collectionType="trendsup"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:User"

 category="UTILIZATION">

 </metric>

 <metric

 units="ms"

 name="Cpu Total Time"

 alias="TotalTime"

 collectionType="trendsup"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Total"

 category="UTILIZATION">

 </metric>

 <metric

 indicator="true"

 units="percentage"

 name="Cpu Usage"

 alias="Usage"

 collectionType="dynamic"

 template="sigar:Type=MultiProcCpu,Arg=%process.query%:Percent"

 category="UTILIZATION">

 </metric>

 </metrics>

 <server name="registryscanserver">

 <plugin

 type="autoinventory"

 class="CustomRegistryScanDetector">

 </plugin>

 <plugin

 type="measurement"

 class="org.hyperic.hq.product.MeasurementPlugin">

 </plugin>

 <scan registry="SOFTWARE\Microsoft\Internet Explorer">

 <include name="AppName"/>

 </scan>

 <config>

 <option

 default="State.Name.eq=iexplore"

 name="process.query"

 description="Process Query for customserver">

 </option>

 </config>

 <metrics

 include="multi-process-metrics">

 </metrics>

 </server>

</plugin>

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 66

Standalone Invocation
A standalone invocation is implemented using -m discover and -p <server object name> options.

java -jar dcs-tools-pdk.jar

-Dplugins.include=registryscan-example

-Dlog=info

-m discover

-p registryscanserver

ServerDetector Class
The ServerDetector class is the base implementation for autodiscovery. ServerDetector is an abstract
class, so cannot be directly used for auto-discovery. An auto-discovery implementation must inherit
ServerDetector.

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.GenericPlugin

 org.hyperic.hq.product.ServerDetector

Resource Properties
The table below describes the resource data that you can define in the plug-in descriptor for a plug-in that
uses an auto-discovery implementation based on ServerDetector.

Resource properties that are not user-configurable are defined in <property> elements in the descriptor.

Property Description Usage

INSTALLPATH Overwrites the installation path. Optional

INSTALLPATH_MATCH See Using Extra Filters below. Optional

INSTALLPATH_NOMATCH See Using Extra Filters below. Optional

VERSION_FILE See Using Extra Filters below. Optional

INVENTORY_ID Overwrites the autoinventory ID (AIID). Optional

AUTOINVENTORY_NAME Formats the discovered object name. Optional

Using Extra Filters
You can use the additional filters INSTALLPATH_MATCH, INSTALLPATH_NOMATCH and VERSION_FILE to
filter discovered resources based on the discovered installation path.

The filters are used in the following order.

1 If VERSION_FILE is not detected, the resource is skipped.

2 If INSTALLPATH_MATCH is not detected from the installation path, the resource is skipped.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 67

3 If INSTALLPATH_NOMATCH is detected from installation path, the resource is skipped.

Using INSTALLPATH
Every server type object must have a value for the installation path property. When you create a server
object manually from the user interface, this property is required.

For server types that are auto-discovered, the installation path is resolved automatically. It is usually
either the server home directory or the process working directory. You can use INSTALLPATH to overwrite
a resource's discovered installation path.

Using AUTOINVENTORY_NAME
You can overwrite a discovered object name by defining a new qualifier. The format of this name is a
single string containing variables (%variable1%) that map to configuration options. Three types of
properties are passed to formatting functions as ConfigResponse objects, the parent resource, the
resource itself, and custom resource properties.

Caution The AUTOINVENTORY_NAME property is used only if the auto-discovery implementation calls the
appropriate formatting functions.

Using INVENTORY_ID
The INVENTORY_ID property, sometimes referred to as the auto-inventory ID, is used to identify unique
objects within discovered object types. The vRealize Operations Manager server verifies whether an
object in an auto-discovery report is already in the inventory by checking to see if an object with that
INVENTORY_ID already exists.

Implementing Methods
This interface implements the following methods.

setDescription(String):v
oid protected void setDescription(String description)

This method sets the server description. It allows you to set the description
outside of the ServerResource object. This enables you to update the
server description while discovering new services, However some rules
apply. If discoverServers() discovers something or
discoverServices() does not discover anything, this field is ignored.

Parameters: description The server description.

setCustomProperties(C
onfigResponse):void protected void setCustomProperties(ConfigResponse cprops)

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 68

This method sets the custom properties for the server. It allows you to set
custom properties outside of the ServerResource object. This enables you
to update server custom properties while discovering new service objects.
Some rules apply. If discoverServers() discovers something, or
discoverServices() does not discover anything, this field is ignored.

Parameters: cprops Server custom properties

discoverServers(Config
Response):List protected List discoverServers(ConfigResponse config)

This is a runtime method for discovering new servers. Override this method
to discover servers for the server object of the plug-in instance. Most plug-
ins override discoverServices(), rather than {{discoverServers()}.

discoverServers()} is typically used in the case in which a plug-in
interface, FileServerDetector or AutoServerDetector, finds an
administration server object, then discoverServers() discovers managed
server nodes. Examples of this usage are found in
vRealize Operations Manager WebLogic, WebSphere, and iPlanet plug-ins.

This method returns NULL if it is not overwritten.

Parameters: Parent configuration

Returns: A list of ServerResource objects.

discoverServices(Confi
gResponse):List protected List discoverServices(ConfigResponse config)

This runtime method discovers new services. Override this method to
discover service objects for the server object of the plug-in instance.

This method returns NULL if not overwritten.

Parameters: Parent configuration

Returns: A list of ServerResource objects.

createServerResource(
String):ServerResource protected ServerResource createServerResource(String installpath)

This is a helper method to initialize a ServerResource with default values.

Parameters: installpath The object installation path.

SNMPDectector Class
You can use the SNMPDetector class in XML-only plug-ins that extend the Network Device plug-in, or
SNMP-enabled servers, such as Squid.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 69

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.GenericPlugin

 [org.hyperic.hq.product.ServerDetector|ServerDetector]

 org.hyperic.hq.product.DaemonDetector

 org.hyperic.hq.product.SNMPDetector

Resource Properties
This table describes the resource data that you can define in the plug-in descriptor for a plug-in that uses
SNMPDetector.

Property Usage

SNMP_INDEX_NAME foo

SNMP_DESCRIPTION foo

Example: Usage

<plugin>

<plugin type="autoinventory"

 class="org.hyperic.hq.product.SNMPDetector"/>

...

</plugin>

Measurement Support Classes
There are a number of Endpoint Operations Management measurement support classes for use when
writing your plug-ins.

Use the following classes, as required.

n MeasurementPlugin Class

The MeasurementPlugin class is a base implementation for measurement operations.

n SNMPMeasurementPlugin Class

Use the SNMPMeasurementPlugin class to collect metrics from SNMP devices.

n Win32MeasurementPlugin Class

Use the Win32MeasurementPlugin class to collect metrics from Windows service objects.

MeasurementPlugin Class
The MeasurementPlugin class is a base implementation for measurement operations.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 70

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.GenericPlugin

 org.hyperic.hq.product.MeasurementPlugin

Implementing Methods
This class implements the following methods.

init init(PluginManager):void

public void init(PluginManager manager)

Table 4‑1.
Parameter Description

manager The plug-in manager.

getManager getManager():MeasurementPluginManager

protected MeasurementPluginManager getManager()

getMeasurementProper

ties

getMeasurementProperties():Map

protected Map getMeasurementProperties()

getMeasurements getMeasurements(TypeInfo):MeasurementInfo[]

public MeasurementInfo getMeasurements(TypeInfo info)

getPlatformHelpPrope

rties

getPlatformHelpProperties():String[][]

protected String getPlatformHelpProperties()

getPluginXMLHelp getPluginXMLHelp(TypeInfo, String, Map):String

protected String getPluginXMLHelp(TypeInfo info, String name, Map props)

getHelp getHelp(TypeInfo, Map):String

public String getHelp(TypeInfo info, Map props)

getValue getValue(Metric):MetricValue

public MetricValue getValue(Metric metric)

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 71

getNewCollector getNewCollector():Collector

public Collector getNewCollector()

getCollectorProperti

es

getCollectorProperties(Metric):Properties

public Properties getCollectorProperties(Metric metric)

translate translate(String, ConfigResponse):String

public String translate(String template, ConfigResponse config)

getConfigSchema getConfigSchema(TypeInfo, ConfigResponse):ConfigSchema

public ConfigSchema getConfigSchema(TypeInfo info, ConfigResponse config)

SNMPMeasurementPlugin Class
Use the SNMPMeasurementPlugin class to collect metrics from SNMP devices.

Property Usage

Property Usage

MIBS Specifies the MIB files that are necessary to run the plug-in.

Example: Usage

<plugin>

 <property name="MIBS"

 value="/etc/squid/mib.txt"/>

...

<plugin type="measurement"

 class="org.hyperic.hq.product.SNMPMeasurementPlugin"/>

...

</plugin>

Win32MeasurementPlugin Class
Use the Win32MeasurementPlugin class to collect metrics from Windows service objects.

Example: Usage

<plugin>

<filter name="store" value="win32:Object=MSExchangeIS"/>

...

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 72

<plugin type="measurement"

 class="org.hyperic.hq.product.Win32MeasurementPlugin"/>

...

</plugin>

ProductPlugin Class
The ProductPlugin class provides the deployment entry point on both the vRealize Operations Manager
server and Endpoint Operations Management agent. It defines the object types and the plug-in
implementations for measurement, control, and autoinventory.

Most ProductPlugin classes are implemented using the plug-in XML descriptor. However, in order to
dynamically generate the classpath, plug-ins can override ProductPlugin. For example, the JBoss plug-
in uses SIGAR to find the installation path of a JBoss server running on the machine, which it uses to set
the classpath.

ServerResource Class
The ServerResource class stores resource data for a newly discovered server objects during auto-
discovery. ServerResource contains the data that is reported for a server object in the auto-inventory
report that the Endpoint Operations Management agent sends to vRealize Operations Manager.

This class stores the following information.

n resource This represents the object itself. Most ServerResource methods modify a modifying
resource. The default constructor creates an empty resource object.

n fqdn The fully qualified domain name for an object. fqdn is not used unless the object is on a
different platform than the Endpoint Operations Management agent that manages it.

n productConfig Contains the product configuration properties for an object.

n metricConfig Contains the metric configuration properties for an object.

n controlConfig Contains the control configuration properties for an object.

n cprops The object custom properties.

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.ServerResource

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 73

Implementing Methods
This class implements the following methods.

setInstallPath setInstallPath(String):void

public void setInstallPath(String name)

This method sets the resource installation path.

Parameter Description

name The path to the installation directory.

setPlatformFqdn setPlatformFqdn(String):void

public void setPlatformFqdn(String name)

This method sets the object's fully qualified domain name. This attribute
should be set only if the discovered server object runs on a different
platform object that on which the Endpoint Operations Management agent
that performed the auto-discover runs. For example, the
Endpoint Operations Management agent that manages a WebLogic Server
cluster runs on the platform on which the administration server runs, and
discovers the managed servers that are running on other platforms. Note
that If you set this attribute, the platform object that you specify must exist
in inventory.

Parameter Description

name The name of the FQDN.

getPlatformFqdn getPlatformFqdn():String

public String getPlatformFqdn()

This method the object FQDN. It returns NULL if the field has not been
specified.

addService addService(ServiceResource):void

public void addService(ServiceResource service)

This method adds a new service resource to this server.

Parameter Description

service The new service resource to add to this server.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 74

addServiceType addServiceType(ServiceType):void

public void addServiceType(ServiceType serviceType)

This method adds a new service type to this server.

Parameter Description

serviceType The new service type to add to this server.

setIdentifier setIdentifier(String):void

public void setIdentifier(String name)

This method sets the autoinventory identifier (AIID) for this resource.

Parameter Description

name The autoinventory identifier.

getIdentifier getIdentifier():String

public String getIdentifier()

This method returns the resource autoinventory identifier.

setType setType(String):void

public void setIdentifier(String name)

This method sets the resource type for the server as defined in the plug-in
descriptor. Pass this method the name of the resource type as defined in
the plug-in descriptor. For example, if the plug-in descriptor specifies
<server name="My Server"> set the resource type to My Server.

If the <server> element defines the version attribute, append the value of
version to the value of the name attribute to create the resource type name.
For example, if the server is defined as <server name="My Server"
version="1.x">, set Type to My Server 1.x.

Parameter Description

name The resource type as a string.

setType(GenericPlugin):void

public void setType(GenericPlugin plugin)

This method derives the resource type to set for the server from the
implementing auto-discovery plug-in, as opposed to the plug-in descriptor.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 75

Parameter Description

plugin The plug-in that is handling the discovery operation.

getType getType():String

public String getType()

This method returns the current resource type name.

setName setName(String):void

public void setName(String name)

This method sets the name of this resource..

Parameter Description

name The name of the resource.

setDescription setDescription(String):void

public void setDescription(String description)

This method sets the description of this resource.

Parameter Description

description The description of the resource.

getDescription getDescription():String

public String getDescription()

This method returns the description of the resource.

setProductConfig setProductConfig(ConfigResponse):void

public void setProductConfig(ConfigResponse config)

This method sets the shared configuration properties for the resource. The
configuration is passed as a ConfigResponse object.

Parameter Description

config The resource shared configuration.

setProductConfig(Map):void

public void setProductConfig(Map config)

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 76

This method sets the shared configuration properties for the resource. The
configuration is passed as a Map object. Internally, ConfigResponse uses
Map to store its keys and values.

Parameter Description

config The map of the resource configuration.

setProductConfig():void

public void setProductConfig()

This method sets and initializes an empty product config.

getProductConfig getProductConfig():ConfigResponse

public ConfigResponse getProductConfig()

This method returns the shared configuration properties for the resource.

setMeasurementConfig setMeasurementConfig(ConfigResponse):void

public void setMeasurementConfig(ConfigResponse config)

This method sets the monitoring configuration properties for the resource.
The configuration is passed as a ConfigResponse object.

Parameter Description

description The description of the resource.

setMeasurementConfig(Map):void

public void setMeasurementConfig(Map config)

This function sets the monitoring configuration properties for the resource.
The configuration is passed as a Map object. Internally, ConfigResponse
uses Map to store its keys and values.

Parameter Description

config The map of the resource measurement configuration.

setMeasurementConfig():void

public void setMeasurementConfig()

This function sets and initializes an empty measurement configuration.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 77

setMeasurementConfig(ConfigResponse, int, boolean):void

public void setMeasurementConfig(ConfigResponse config,

 int logTrackLevel,

 boolean enableConfigTrack)

This function sets the monitoring configuration properties for the resource.
The configuration is passed as a Map object. Internally, ConfigResponse
uses Map to store its keys and values.

This function can be used to enable log and configuration tracking at the
same time. LogTrackPlugin defines the following log levels.

public static final int LOGLEVEL_ANY = -1;

 public static final int LOGLEVEL_ERROR = 3;

 public static final int LOGLEVEL_WARN = 4;

 public static final int LOGLEVEL_INFO = 6;

 public static final int LOGLEVEL_DEBUG = 7;

Parameter Description

config The resource measurement configuration.

logTrackLevel The log tracking level in internal type of int.

enableConfigTrack Enables config tracking if TRUE otherwise, use FALSE.

getMeasurementConfig getMeasurementConfig():ConfigResponse

public ConfigResponse getMeasurementConfig()

This method returns the monitoring configuration properties for the
resource.

setControlConfig setControlConfig(ConfigResponse):void

public void setControlConfig(ConfigResponse config)

This method sets the control configuration properties for the resource. The
configuration is passed as a ConfigResponse object.

Parameter Description

config The resource control configuration.

setControlConfig(Map):void

public void setControlConfig(Map config)

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 78

This function sets the control configuration properties for the resource. The
configuration is passed as a Map object. Internally, ConfigResponse uses
Map to store its keys and values.

Parameter Description

config The map of the resource control configuration.

setControlConfig():void

public void setControlConfig()

This function sets and initializes an empty control configuration.

getControlConfig getControlConfig():ConfigResponse

public ConfigResponse getControlConfig()

This function returns the resource control configuration.

setCustomProperties setCustomProperties(ConfigResponse):void

public void setCustomProperties(ConfigResponse config)

This method sets custom properties for the resource. These are the
resource attributes that are defined using the <property> elements in the
plug-in descriptor. The configuration is passed as a ConfigResponse
object.

Parameter Description

config The resource custom properties.

setCustomProperties(Map):void

public void setCustomProperties(Map props

This function sets custom properties for the resource. These are the
resource attributes that are defined using the <property> elements in the
plug-in descriptor. The properties are passed using Map object. Internally,
ConfigResponse uses Map to store its keys and values.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 79

Parameter Description

config The resource custom properties.

getCustomProperties getCustomProperties():ConfigResponse

public ConfigResponse getCustomProperties()

This method returns custom properties for the resource. These are the
resource attributes that are defined using the <property> elements in the
plug-in descriptor.

ServiceResource Class
The ServiceResource class is used to store information for newly discovered services during the
autodiscovery methods. This class contains everything that is included in a runtime autoinventory report.

Class Hierarchy

java.lang.Object

 org.hyperic.hq.product.ServiceResource

Implementing Methods
This class implements the following method.

setName setName(String):void

public void setName(String name)

This method sets the resource name.

Parameter Description

name The name of the resource.

ConfigResponse Class
The ConfigResponse class is used throughout Endpoint Operations Management source code to store
and transfer configuration data. From an end user perspective this class acts as a key/value storage.
Usually you use this class to add configuration properties to new resources created during auto discovery
methods.

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 80

Class Hierarchy

java.lang.Object

 org.hyperic.util.config.ConfigResponse

Implementing Methods
This class implements the following methods.

setValue setValue(String, String):void

public void setValue(String key, String value)

throws InvalidOptionException, InvalidOptionValueException;

Set the value for an option.

Parameters: key The name of the option to set.

value The value to set the option to.

Exceptions: InvalidOptionException Returned when the ConfigResponse does
not support the specified option.

nvalidOptionValueException Returned when the supplied value is not
valid for the specified option.

Example: Usage

private static final String PTQL_QUERY = "State.Name.ct=firefox";

public List getServerResources(ConfigResponse config) throws PluginException {

 List servers = new ArrayList();

 String installPath = "";

 ConfigResponse productConfig = new ConfigResponse();

 productConfig.setValue("process.query", PTQL_QUERY);

 ServerResource server = createServerResource(installPath);

 setProductConfig(server, productConfig);

 server.setMeasurementConfig();

 servers.add(server);

 return servers;

}

Endpoint Operations Management Agent Plug-in Development Kit

VMware, Inc. 81

	Endpoint Operations Management Agent Plug-in Development Kit
	Contents
	About the Endpoint Operations Management Agent Plug-in Development Kit
	Introduction to Plug-in Development
	The Role of the Server and Agent in Plug-ins
	Technical Overview
	Plug-in Implementations
	Using Support Classes to Simplify a Plug-in
	Writing Plug-ins
	JMX Plug-in
	Discovering Custom Properties
	Custom MBean Plug-in Examples

	Script Plug-ins
	Defining Management Functions in a Script Plug-in
	Script Plug-in Examples

	SNMP Plug-in
	JMX-Based Management
	Auto-Discovery of JMX Resources
	Configuration Properties for JMX Monitoring
	Creating a Custom JMX Plug-in
	Defining Service Types to Provide Management via Custom MBeans
	Defining an ObjectName to Access Custom MBeans
	Defining Configuration Properties to Appear in the User Interface
	Defining and Gathering Metrics
	Specifying the Availability Metric for MBeans
	Implementing Control Actions
	Defining the Server Auto-Inventory Element
	Discovering Custom Properties

	Running and Testing Plug-ins from the Command Line
	dcs-tools-pdk.jar Command Syntax
	Generating and Using Resource Properties Files
	Resource Properties Files
	Names and Locations of Properties Files
	Content of Properties Files
	Inherited Resource Properties

	Properties for Controlling Agent Behavior and Plug-in Execution
	Methods and Functions of the dcs-tools-pdk.jar File
	lifecycle Method
	discover Method
	metric Method
	track Method
	generate Method

	Running Protocol Checks from the Command Line

	Using Auto-Discovery Support Classes in Plug-ins
	Auto-Discovery Classes
	Auto-Discovery Interfaces
	Specifying Auto-Discovery Implementation for a Resource Type
	Measurement Plug-ins
	Measurement Support Classes
	Specifying the Measurement Plug-in in the Plug-in Descriptor

	Defining Measurements Using the metric Tag
	Using Templates to Collect Metric Data
	Using Support Classes to Simplify Metric Collection
	Setting a Plug-in to Auto-discover Resources

	Working with Plug-in Descriptors
	Hierarchy of Managed Object Types
	Management Functions and Classes for Object Types
	Inventory and Configuration Data for Object Types
	Metrics to Collect for Each Object Type
	Structure of a Plug-in Descriptor
	Functionality of Plug-in Descriptor Elements

	Plug-In Support Classes
	Auto-Discovery Support Classes
	DaemonDetector Class
	FileServerDetector Class
	MxServerDetector Class
	RegistryServerDetector Class
	ServerDetector Class
	SNMPDectector Class

	Measurement Support Classes
	MeasurementPlugin Class
	SNMPMeasurementPlugin Class
	Win32MeasurementPlugin Class

	ProductPlugin Class
	ServerResource Class
	ServiceResource Class
	ConfigResponse Class

