As a data scientist or a DevOps engineer, you can use Automation Service Broker to deploy NVIDIA RAG workloads.
Deploy a RAG workstation
As a data scientist, you can deploy a GPU-enabled workstation with Retrieval Augmented Generation (RAG) reference solution from the self-service Automation Service Broker catalog.
Procedure
- On the Catalog page in Automation Service Broker, locate the AI RAG Workstation card and click Request.
- Select a project.
- Enter a name and description for your deployment.
- Configure the RAG workstation parameters.
Setting Sample value VM class A100 Small - 1 vGPU (16 GB), 8 CPUs and 16 GB Memory Minimum VM class specification:- CPU: 10 vCPUs
- CPU RAM: 64 GB
- GPU: 2xH100
- GPU memory: 50 GB
Data disk size 3 Gi User password Enter a password for the defalt user. You might be prompted to reset your password when you first log in. SSH public key This setting is optional. - Install software customizations.
- (Optional) If you want to install a custom cloud-init in addition to the cloud-init defined for the RAG software bundle, select the checkbox and paste the contents of the configuration package.
VMware Aria Automation merges the cloud-init from the RAG software bundle and the custom cloud-init.
- Provide your NVIDIA NGC Portal access key.
- Enter Docker Hub credentials.
- (Optional) If you want to install a custom cloud-init in addition to the cloud-init defined for the RAG software bundle, select the checkbox and paste the contents of the configuration package.
- Click Submit.
Results
Deploy a GPU-accelerated Tanzu Kubernetes Grid RAG cluster
As a DevOps engineer using the self-service Automation Service Broker catalog, you can provision a GPU-enabled Tanzu Kubernetes Grid RAG cluster, where worker nodes can run a reference RAG solution that uses the Llama2-13b-chat model.
The deployment contains a Supervisor namespace and a Tanzu Kubernetes Grid cluster. The TKG cluster contains two Supervisor namespaces – one for the NVIDIA GPU Operator and the other for the NVIDIA RAG LLM Operator, both of which are preinstalled on the TKG cluster. Carvel applications for each operator are deployed inside these two namespaces.
Procedure
- On the Catalog page in Automation Service Broker, locate the AI Kubernetes RAG Cluster card and click Request.
- Select a project.
- Enter a name and description for your deployment.
- Select the number of control pane nodes.
Setting Sample value Node count 1 VM class best-effort-2xlarge - 8 CPUs and 64 GB Memory The class selection defines the resources available within the virtual machine.
- Select the number of work nodes.
Setting Description Node count 3 VM class best-effort-4xlarge-a100-40c - 1 vGPU (40 GB), 16 CPUs and 120 GB Memory Minimum VM class specification:- CPU: 10 vCPUs
- CPU RAM: 64 GB
- GPU: 2xH100
- GPU memory: 50 GB
Time-slicing replicas 1 Time-slicing defines a set of replicas for a GPU that is shared between workloads.
- Provide the NVIDIA AI enterprise API key.
- Click Submit.